Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Bioenergetic and inflammatory systemic phenotypes in Alzheimer's disease APOE ε4-carriers.

Aging cell | 2021

We examined the impact of an APOE ε4 genotype on Alzheimer's disease (AD) subject platelet and lymphocyte metabolism. Mean platelet mitochondrial cytochrome oxidase Vmax activity was lower in APOE ε4 carriers and lymphocyte Annexin V, a marker of apoptosis, was significantly higher. Proteins that mediate mitophagy and energy sensing were higher in APOE ε4 lymphocytes which could represent compensatory changes and recapitulate phenomena observed in post-mortem AD brains. Analysis of the lipid synthesis pathway found higher AceCSI, ATP CL, and phosphorylated ACC levels in APOE ε4 lymphocytes. Lymphocyte ACC changes were also observed in post-mortem brain tissue. Lymphocyte RNAseq showed lower APOE ε4 carrier sphingolipid Transporter 3 (SPNS3) and integrin Subunit Alpha 1 (ITGA1) expression. RNAseq pathway analysis revealed APOE ε4 alleles activated inflammatory pathways and modulated bioenergetic signaling. These findings support a relationship between APOE genotype and bioenergetic pathways and indicate platelets and lymphocytes from APOE ε4 carriers exist in a state of bioenergetic stress. Neither medication use nor brain-localized AD histopathology can account for these findings, which define an APOE ε4-determined molecular and systemic phenotype that informs AD etiology.

Pubmed ID: 33939248 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIA NIH HHS, United States
    Id: P30 AG035982
  • Agency: NIA NIH HHS, United States
    Id: R00 AG056600
  • Agency: NIA NIH HHS, United States
    Id: P30 AG072973
  • Agency: NIGMS NIH HHS, United States
    Id: P20 GM130423
  • Agency: NIA NIH HHS, United States
    Id: K99 AG056600

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Bioconductor (tool)

RRID:SCR_006442

Software repository for R packages related to analysis and comprehension of high throughput genomic data. Uses separate set of commands for installation of packages. Software project based on R programming language that provides tools for analysis and comprehension of high throughput genomic data.

View all literature mentions

University of Pittsburgh Alzheimer Disease Research Center (tool)

RRID:SCR_008084

A research center associated with the University of Pittsburgh that specializes in the diagnosis of Alzheimer's disease and related disorders. The overall objective of the ADRC is to study the pathophysiology of Alzheimer's disease, with the aim of improving the reliability of diagnosis of Alzheimer's and developing effective treatment strategies. Current research foci emphasize neuropsychiatry and neuropsychology, molecular genetics and epidemiology, basic neuroscience, and structural and functional imaging that aid in the diagnosis and treatment of Alzheimer's disease. Specific services at the ADRC include: comprehensive diagnostic evaluation of patients with suspected Alzheimer's disease and other forms of dementia; evaluation of memory, language, judgment, and other cognitive abilities; and education and counseling for patients and families.

View all literature mentions

Ingenuity Pathway Analysis (tool)

RRID:SCR_008653

A web-based software application that enables users to analyze, integrate, and understand data derived from gene expression, microRNA, and SNP microarrays, metabolomics, proteomics, and RNA-Seq experiments, and small-scale experiments that generate gene and chemical lists. Users can search for targeted information on genes, proteins, chemicals, and drugs, and build interactive models of experimental systems. IPA allows exploration of molecular, chemical, gene, protein and miRNA interactions, creation of custom molecular pathways, and the ability to view and modify metabolic, signaling, and toxicological canonical pathways. In addition to the networks and pathways that can be created, IPA can provide multiple layering of additional information, such as drugs, disease genes, expression data, cellular functions and processes, or a researchers own genes or chemicals of interest.

View all literature mentions

KEGG (tool)

RRID:SCR_012773

Integrated database resource consisting of 16 main databases, broadly categorized into systems information, genomic information, and chemical information. In particular, gene catalogs in completely sequenced genomes are linked to higher-level systemic functions of cell, organism, and ecosystem. Analysis tools are also available. KEGG may be used as reference knowledge base for biological interpretation of large-scale datasets generated by sequencing and other high-throughput experimental technologies.

View all literature mentions

FastQC (tool)

RRID:SCR_014583

Quality control software that perform checks on raw sequence data coming from high throughput sequencing pipelines. This software also provides a modular set of analyses which can give a quick impression of the quality of the data prior to further analysis.

View all literature mentions