Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Computational prediction of secreted proteins in gram-negative bacteria.

Computational and structural biotechnology journal | 2021

Gram-negative bacteria harness multiple protein secretion systems and secrete a large proportion of the proteome. Proteins can be exported to periplasmic space, integrated into membrane, transported into extracellular milieu, or translocated into cytoplasm of contacting cells. It is important for accurate, genome-wide annotation of the secreted proteins and their secretion pathways. In this review, we systematically classified the secreted proteins according to the types of secretion systems in Gram-negative bacteria, summarized the known features of these proteins, and reviewed the algorithms and tools for their prediction.

Pubmed ID: 33897982 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Predictions for Entire Proteomes (tool)

RRID:SCR_002803

Web application for sequence analysis and the prediction of protein structure and function. The user interface intakes protein sequences or alignments and returned multiple sequence alignments, motifs, and nuclear localization signals.

View all literature mentions

PRED-TMBB (tool)

RRID:SCR_006190

A web tool, based on a Hidden Markov Model, capable of predicting the transmembrane beta-strands of the gram-negative bacteria outer membrane proteins, and of discriminating such proteins from water-soluble ones when screening large datasets. The model is trained in a discriminative manner, aiming at maximizing the probability of the correct prediction rather than the likelihood of the sequences. The training is performed on a non-redundant database consisting of 16 outer membrane proteins (OMP''s) with their structures known at atomic resolution. We show that we can achieve predictions at least as good comparing with other existing methods, using as input only the amino-acid sequence, without the need of evolutionary information included in multiple alignments. The method is also powerful when used for discrimination purposes, as it can discriminate with a high accuracy the outer membrane proteins from water soluble in large datasets, making it a quite reliable solution for screening entire genomes. This web-server can help you run a discriminating process on any amino-acid sequence and thereafter localize the transmembrane strands and find the topology of the loops.

View all literature mentions

ConBBPRED (tool)

RRID:SCR_006194

A web tool for the Consensus Prediction of TransMembrane Beta-Barrel Proteins. Prediction of the transmembrane strands and topology of beta-barrel outer membrane proteins is of interest in current bioinformatics research. Several methods have been applied so far for this task, utilizing different algorithmic techniques and a number of freely available predictors exist. The methods can be grossly divided to those based on Hidden Markov Models (HMMs), on Neural Networks (NNs) and on Support Vector Machines (SVMs). In this work, we compare the different available methods for topology prediction of beta-barrel outer membrane proteins. We evaluate their performance on a non-redundant dataset of 20 beta-barrel outer membrane proteins of gram-negative bacteria, with structures known at atomic resolution. Also, we describe, for the first time, an effective way to combine the individual predictors, at will, to a single consensus prediction method. We assess the statistical significance of the performance of each prediction scheme and conclude that Hidden Markov Model based methods, HMM-B2TMR, ProfTMB and PRED-TMBB, are currently the best predictors, according to either the per-residue accuracy, the segments overlap measure (SOV) or the total number of proteins with correctly predicted topologies in the test set. Furthermore, we show that the available predictors perform better when only transmembrane beta-barrel domains are used for prediction, rather than the precursor full-length sequences, even though the HMM-based predictors are not influenced significantly. The consensus prediction method performs significantly better than each individual available predictor, since it increases the accuracy up to 4% regarding SOV and up to 15% in correctly predicted topologies.

View all literature mentions

BOMP: beta-barrel Outer Membrane protein Predictor (tool)

RRID:SCR_007268

BOMP is a tool for prediction of beta-barrel integral outer membrane proteins. The user may submit a list of proteins, and receive a list of predicted BOMPs. The program, called the beta-barrel Outer Membrane protein Predictor (BOMP), is based on two separate components to recognize integral beta-barrel proteins. The first component is a C-terminal pattern typical of many integral beta-barrel proteins. The second component calculates an integral beta-barrel score of the sequence based on the extent to which the sequence contains stretches of amino acids typical of transmembrane -strands. To use the BOMP tool simply paste your fasta-formatted sequences into the text area, or choose a file which contains sequences. Then hit the submit button. It is possible to perform a BLAST search parallel with the predictions, which may be suitable in some cases. Using the BLAST search will however increase the running time substantially. Sponsors: This work was supported in part by grants from the Norwegian Research Council [SUP 140785/420 (GABI); FUGE/CBU151899/ISO], and the Meltzer Foundation, University of Bergen. Keywords: Beta-barrel, Membrane, Protein, Program, Software, Beta strand, Bacteria,

View all literature mentions

PSIPRED (tool)

RRID:SCR_010246

Web tool as secondary structure prediction method, incorporating two feed forward neural networks which perform analysis on output obtained from PSI-BLAST. Web server offering analyses of protein sequences.

View all literature mentions

Phobius (tool)

RRID:SCR_015643

Web application for combined transmembrane topology and signal peptide prediction. Used for whole genome annotation of signal peptides and transmembrane regions. Predictor is based on hidden Markov model (HMM) that models different sequence regions of signal peptide and different regions of transmembrane protein in series of interconnected states.

View all literature mentions