Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SARS-CoV-2 outbreak in Iran: The dynamics of the epidemic and evidence on two independent introductions.

Transboundary and emerging diseases | 2022

The SARS-CoV-2 virus has been rapidly spreading globally since December 2019, triggering a pandemic, soon after its emergence. While Iran was among the first countries confronted with rapid spread of virus in February 2020, no real-time SARS-CoV-2 whole-genome tracking in early phase of outbreak was performed in the country. To address this issue, we provided 50 whole-genome sequences of viral isolates ascertained from different geographical locations in Iran during March-July 2020. The corresponding analysis on origins, transmission dynamics and genetic diversity of SARS-CoV-2 virus, represented at least two introductions of the virus into the country, constructing two major clusters defined as B.4 and B.1*. The first entry of the virus might have occurred around very late 2019/early 2020, as suggested by the time to the most recent common ancestor, followed by a rapid community transmission that led to dominancy of B.4 lineage in early epidemic till the end of June. Gradually, reduction in dominancy of B.4 occurred possibly as a result of other entries of the virus, followed by surge of B.1* lineages, as of mid-May. Remarkably, variation tracking of the virus indicated the increase in frequency of D614G mutation, along with B.1* lineages, which showed continuity till October 2020. The increase in frequency of D614G mutation and B.1* lineages from mid-May onwards predicts a rapid viral transmission that may push the country into a critical health situation followed by a considerable change in composition of viral lineages circulating in the country.

Pubmed ID: 33835709 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SAMTOOLS (tool)

RRID:SCR_002105

Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.

View all literature mentions

BEAST (tool)

RRID:SCR_010228

A cross-platform software program for Bayesian MCMC analysis of molecular sequences. It is entirely orientated towards rooted, time-measured phylogenies inferred using strict or relaxed molecular clock models. It can be used as a method of reconstructing phylogenies but is also a framework for testing evolutionary hypotheses without conditioning on a single tree topology. BEAST uses MCMC to average over tree space, so that each tree is weighted proportional to its posterior probability. We include a simple to use user-interface program for setting up standard analyses and a suit of programs for analysing the results.

View all literature mentions

MAFFT (tool)

RRID:SCR_011811

Software package as multiple alignment program for amino acid or nucleotide sequences. Can align up to 500 sequences or maximum file size of 1 MB. First version of MAFFT used algorithm based on progressive alignment, in which sequences were clustered with help of Fast Fourier Transform. Subsequent versions have added other algorithms and modes of operation, including options for faster alignment of large numbers of sequences, higher accuracy alignments, alignment of non-coding RNA sequences, and addition of new sequences to existing alignments.

View all literature mentions

FastQC (tool)

RRID:SCR_014583

Quality control software that perform checks on raw sequence data coming from high throughput sequencing pipelines. This software also provides a modular set of analyses which can give a quick impression of the quality of the data prior to further analysis.

View all literature mentions

Seqtk (tool)

RRID:SCR_018927

Software fast and lightweight tool for processing sequences in FASTA or FASTQ format.

View all literature mentions