Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Machine Learning Models for the Classification of Sleep Deprivation Induced Performance Impairment During a Psychomotor Vigilance Task Using Indices of Eye and Face Tracking.

Frontiers in artificial intelligence | 2020

High risk professions, such as pilots, police officers, and TSA agents, require sustained vigilance over long periods of time and/or under conditions of little sleep. This can lead to performance impairment in occupational tasks. Predicting impaired states before performance decrement manifests is critical to prevent costly and damaging mistakes. We hypothesize that machine learning models developed to analyze indices of eye and face tracking technologies can accurately predict impaired states. To test this we trained 12 types of machine learning algorithms using five methods of feature selection with indices of eye and face tracking to predict the performance of individual subjects during a psychomotor vigilance task completed at 2-h intervals during a 25-h sleep deprivation protocol. Our results show that (1) indices of eye and face tracking are sensitive to physiological and behavioral changes concomitant with impairment; (2) methods of feature selection heavily influence classification performance of machine learning algorithms; and (3) machine learning models using indices of eye and face tracking can correctly predict whether an individual's performance is "normal" or "impaired" with an accuracy up to 81.6%. These methods can be used to develop machine learning based systems intended to prevent operational mishaps due to sleep deprivation by predicting operator impairment, using indices of eye and face tracking.

Pubmed ID: 33733136 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FISHER (tool)

RRID:SCR_009181

THIS RESOURCE IS NO LONGER IN SERVICE, documented on February 1st, 2022. Software application for genetic analysis of classical biometric traits like blood pressure or height that are caused by a combination of polygenic inheritance and complex environmental forces. (entry from Genetic Analysis Software)

View all literature mentions