2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A novel mutation in GP1BA gene in a family with autosomal dominant Bernard Soulier syndrome variant: A case report.

Experimental and therapeutic medicine | 2021

Classic Bernard-Soulier syndrome (BSS) is a rare form of autosomal recessive disorder that is caused by mutations in the GP1BA gene that encode the GPIb-V-IX complex, a receptor of von Willebrand factor. BSS characterized by macrothrombocytopenia and excessive bleeding. The present study reports a single case (18-month Chinese girl) diagnosed with BSS. The patient suffered mild thrombocytopenia, giant platelets and normal platelet aggregation. In addition, mild bleeding and thrombocytopenia were also indicated in thirteen family members, including the proband and her father. Gene sequence analysis identified a monoallelic missense mutation in GP1BA (c.97T>A), which encodes a p.C33R substitution in the N-terminal domain of glycoprotein (GP)Ibα that may disrupt the protein structure. To the best of our knowledge, this dominant variant has not been reported previously. BSS's autosomal dominant inheritance mode is rarely identified and can be easily misdiagnosed as immune thrombocytopenia. For patients with giant platelets, thrombocytopenia and positive family history, next-generation sequencing for inherited thrombocytopenia, especially disorders that are caused by mutations in glycoprotein Ib-IX-V complex, is required.

Pubmed ID: 33732333 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


OMIM (tool)

RRID:SCR_006437

Online catalog of human genes and genetic disorders, for clinical features, phenotypes and genes. Collection of human genes and genetic phenotypes, focusing on relationship between phenotype and genotype. Referenced overviews in OMIM contain information on all known mendelian disorders and variety of related genes. It is updated daily, and entries contain copious links to other genetics resources.

View all literature mentions

1000 Genomes: A Deep Catalog of Human Genetic Variation (tool)

RRID:SCR_006828

International collaboration producing an extensive public catalog of human genetic variation, including SNPs and structural variants, and their haplotype contexts, in an effort to provide a foundation for investigating the relationship between genotype and phenotype. The genomes of about 2500 unidentified people from about 25 populations around the world were sequenced using next-generation sequencing technologies. Redundant sequencing on various platforms and by different groups of scientists of the same samples can be compared. The results of the study are freely and publicly accessible to researchers worldwide. The consortium identified the following populations whose DNA will be sequenced: Yoruba in Ibadan, Nigeria; Japanese in Tokyo; Chinese in Beijing; Utah residents with ancestry from northern and western Europe; Luhya in Webuye, Kenya; Maasai in Kinyawa, Kenya; Toscani in Italy; Gujarati Indians in Houston; Chinese in metropolitan Denver; people of Mexican ancestry in Los Angeles; and people of African ancestry in the southwestern United States. The goal Project is to find most genetic variants that have frequencies of at least 1% in the populations studied. Sequencing is still too expensive to deeply sequence the many samples being studied for this project. However, any particular region of the genome generally contains a limited number of haplotypes. Data can be combined across many samples to allow efficient detection of most of the variants in a region. The Project currently plans to sequence each sample to about 4X coverage; at this depth sequencing cannot provide the complete genotype of each sample, but should allow the detection of most variants with frequencies as low as 1%. Combining the data from 2500 samples should allow highly accurate estimation (imputation) of the variants and genotypes for each sample that were not seen directly by the light sequencing. All samples from the 1000 genomes are available as lymphoblastoid cell lines (LCLs) and LCL derived DNA from the Coriell Cell Repository as part of the NHGRI Catalog. The sequence and alignment data generated by the 1000genomes project is made available as quickly as possible via their mirrored ftp sites. ftp://ftp.1000genomes.ebi.ac.uk ftp://ftp-trace.ncbi.nlm.nih.gov/1000genomes

View all literature mentions

MutationTaster (tool)

RRID:SCR_010777

Evaluates disease-causing potential of sequence alterations.

View all literature mentions

PolyPhen: Polymorphism Phenotyping (tool)

RRID:SCR_013189

Software tool which predicts possible impact of amino acid substitution on structure and function of human protein using straightforward physical and comparative considerations. PolyPhen-2 is new development of PolyPhen tool for annotating coding nonsynonymous SNPs.

View all literature mentions

Genome Aggregation Database (tool)

RRID:SCR_014964

Database that aggregates exome and genome sequencing data from large-scale sequencing projects. The gnomAD data set contains individuals sequenced using multiple exome capture methods and sequencing chemistries. Raw data from the projects have been reprocessed through the same pipeline, and jointly variant-called to increase consistency across projects.

View all literature mentions