Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Contrasting Functions of Mitogen- and Stress-activated Protein Kinases 1 and 2 in Recognition Memory and In Vivo Hippocampal Synaptic Transmission.

Neuroscience | 2021

The mitogen-activated protein kinases (MAPK) are major signaling components of intracellular pathways required for memory consolidation. Mitogen- and stress-activated protein kinases 1 and 2 (MSK1 and MSK2) mediate signal transduction downstream of MAPK. MSKs are activated by Extracellular-signal Regulated Kinase 1/2 (ERK1/2) and p38 MAPK. In turn, they can activate cyclic AMP-response-element-binding protein (CREB), thereby modulating the expression of immediate early genes crucial for the formation of long-term memories. While MSK1 has been previously implicated in certain forms of learning and memory, little is known concerning MSK2. Our goal was to explore the respective contribution of MSK1 and MSK2 in hippocampal synaptic transmission and plasticity and hippocampal-dependent recognition memory. In Msk1- and Msk2-knockout mice, we evaluated object and object-place recognition memory, basal synaptic transmission, paired-pulse facilitation (PPF) and inhibition (PPI), and the capacity to induce and sustain long-term potentiation (LTP) in vivo. We also assessed the level of two proteins downstream in the MAPK/ERK1/2 pathway crucial for long-term memory, CREB and the immediate early gene (IEG) Early growth response 1 (EGR1). Loss of Msk1, but not of Msk2, affected excitatory synaptic transmission at perforant path-to-dentate granule cell synapses, altered short-term presynaptic plasticity, impaired selectively long-term spatial recognition memory, and decreased basal levels of CREB and its activated form. LTP in vivo and LTP-induced CREB phosphorylation and EGR1 expression were unchanged after Msk1 or Msk2 deletion. Our findings demonstrate a dissimilar contribution of MSKs proteins in cognitive processes and suggest that Msk1 loss-of-function only has a deleterious impact on neuronal activity and hippocampal-dependent memory consolidation.

Pubmed ID: 33722673 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions