Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Hippocampus segmentation on epilepsy and Alzheimer's disease studies with multiple convolutional neural networks.

Heliyon | 2021

Background: Hippocampus segmentation on magnetic resonance imaging is of key importance for the diagnosis, treatment decision and investigation of neuropsychiatric disorders. Automatic segmentation is an active research field, with many recent models using deep learning. Most current state-of-the art hippocampus segmentation methods train their methods on healthy or Alzheimer's disease patients from public datasets. This raises the question whether these methods are capable of recognizing the hippocampus on a different domain, that of epilepsy patients with hippocampus resection. New Method: In this paper we present a state-of-the-art, open source, ready-to-use, deep learning based hippocampus segmentation method. It uses an extended 2D multi-orientation approach, with automatic pre-processing and orientation alignment. The methodology was developed and validated using HarP, a public Alzheimer's disease hippocampus segmentation dataset. Results and Comparisons: We test this methodology alongside other recent deep learning methods, in two domains: The HarP test set and an in-house epilepsy dataset, containing hippocampus resections, named HCUnicamp. We show that our method, while trained only in HarP, surpasses others from the literature in both the HarP test set and HCUnicamp in Dice. Additionally, Results from training and testing in HCUnicamp volumes are also reported separately, alongside comparisons between training and testing in epilepsy and Alzheimer's data and vice versa. Conclusion: Although current state-of-the-art methods, including our own, achieve upwards of 0.9 Dice in HarP, all tested methods, including our own, produced false positives in HCUnicamp resection regions, showing that there is still room for improvement for hippocampus segmentation methods when resection is involved.

Pubmed ID: 33659748 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


RESNET (tool)

RRID:SCR_002121

Databases that represent sets of pre-compiled information on biological relationships and associations, interactions and facts which have been extracted from the biomedical literature using Ariadne's MedScan technology. ResNet databases store information harvested from the entire PubMed in a formal structure that allows searching, retrieval and updating by Pathway Studio user. ResNet is seamlessly installed when Pathway Studio is installed. There are several available ResNet databases: *ResNet Mammalian Database includes data for Human, Rat, and Mouse *ResNet Plant Database has data on Arabidopsis, Rice and several other plants. Features of ResNet: *All extracted relations have linked access to the original article or abstract *Synonyms and homologs are included to maintain gene identity and to obviate redundancy in search results *Users can update ResNet as often as required using the MedScan technology built into all Ariadne products *Updates are made available by Ariadne every quarter To purchase Pathway Studio software with ResNet database, for information, or to schedule a web demonstration, call our sales department at (240) 453-6272, or (866) 340-5040 (toll free).

View all literature mentions

Foundation for the National Institutes of Health (tool)

RRID:SCR_004493

A public charity whose mission is to support the NIH in its mission to improve health, by forming and facilitating public-private partnerships for biomedical research and training. Its vision is Building Partnerships for Discovery and Innovation to Improve Health. The FNIH draws together the world''s foremost researchers and resources, pressing the frontier to advance critical discoveries. They are recognized as the number-one medical research charity in the countryleveraging support, and convening high level partnerships, for the greatest impact on the most urgent medical challenges we face today. Grants are awarded as part of a public-private partnership with the National Heart, Lung, and Blood Institute (NHLBI) on behalf of The Heart Truth in support of women''s heart health education and research. Funding for the Community Action Program is provided by the FNIH through donations from individuals and corporations including The Heart Truth partners Belk Department Stores, Diet Coke, and Swarovski. Successful biomedical research relies upon the knowledge, training and dedication of those who conduct it. Bringing multiple disciplines to bear on health challenges requires innovation and collaboration on the part of scientists. Foundation for NIH partnerships operate in a variety of ways and formats to recruit, train, empower and retain their next generation of researchers. From lectures and multi-week courses, to scholarships and awards through fellowships and residential training programs, their programs respond to the needs of scientists at every level and stage in their careers.

View all literature mentions