Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Cytokinin oxidase/dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number.

Plant biotechnology journal | 2021

The flag leaf and grain belong to the source and sink, respectively, of cereals, and both have a bearing on final yield. Premature leaf senescence significantly reduces the photosynthetic rate and severely lowers crop yield. Cytokinins play important roles in leaf senescence and determine grain number. Here, we characterized the roles of the rice (Oryza sativa L.) cytokinin oxidase/dehydrogenase OsCKX11 in delaying leaf senescence, increasing grain number, and coordinately regulating source and sink. OsCKX11 was predominantly expressed in the roots, leaves, and panicles and was strongly induced by abscisic acid and leaf senescence. Recombinant OsCKX11 protein catalysed the degradation of various types of cytokinins but showed preference for trans-zeatin and cis-zeatin. Cytokinin levels were significantly increased in the flag leaves of osckx11 mutant compared to those of the wild type (WT). In the osckx11 mutant, the ABA-biosynthesizing genes were down-regulated and the ABA-degrading genes were up-regulated, thereby reducing the ABA levels relative to the WT. Thus, OsCKX11 functions antagonistically between cytokinins and ABA in leaf senescence. Moreover, osckx11 presented with significantly increased branch, tiller, and grain number compared with the WT. Collectively, our findings reveal that OsCKX11 simultaneously regulates photosynthesis and grain number, which may provide new insights into leaf senescence and crop molecular breeding.

Pubmed ID: 33448635 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


TAIR (tool)

RRID:SCR_004618

Database of genetic and molecular biology data for the model higher plant Arabidopsis thaliana. Data available includes the complete genome sequence along with gene structure, gene product information, metabolism, gene expression, DNA and seed stocks, genome maps, genetic and physical markers, publications, and information about the Arabidopsis research community. Gene product function data is updated every two weeks from the latest published research literature and community data submissions. Gene structures are updated 1-2 times per year using computational and manual methods as well as community submissions of new and updated genes. TAIR also provides extensive linkouts from data pages to other Arabidopsis resources. The data can be searched, viewed and analyzed. Datasets can also be downloaded. Pages on news, job postings, conference announcements, Arabidopsis lab protocols, and useful links are provided.

View all literature mentions

MaizeGDB (tool)

RRID:SCR_006600

Collection of data related to crop plant and model organism Zea mays. Used to synthesize, display, and provide access to maize genomics and genetics data, prioritizing mutant and phenotype data and tools, structural and genetic map sets, and gene models and to provide support services to the community of maize researchers. Data stored at MaizeGDB was inherited from the MaizeDB and ZmDB projects. Sequence data are from GenBank. Data are searchable by phenotype, traits, Pests, Gel Pattern, and Mutant Images.

View all literature mentions

Promega (tool)

RRID:SCR_006724

An Antibody supplier

View all literature mentions

ARAMEMNON, a Novel Database for Arabidopsis Integral Membrane Proteins (tool)

RRID:SCR_007552

A database of putative membrane proteins of Thale Cress (Arabidopsis thaliana), Rice (Oryza sativa) and about some 6700 putative membrane proteins of ~300 other seed plants. The database stores data about: * protein, cDNA and genomic sequences * exon predictions (A.thaliana and O.sativa) * different cDNA/protein models of genes (A.thaliana and O.sativa) * ontology terms according to the Gene Ontology (GO) Consortium * protein sequence motifs as predictable by using the PFAM database * transporter classification as predictable by using the TC-system * bibliographic references * predictions for transmembrane spanning proteins (transmembrane alpha helices, beta barrels) * predictions for membrane-anchored proteins (GPI-attachment, prenylation, myristoylation) * prediction of the subcellular location * consensus predictions (transmembrane alpha helices, subcellular location) * isospecic homologs (''paralogs'') * heterospecic homologs (''orthologs'')

View all literature mentions

RAP-DB (tool)

RRID:SCR_015062

Database that provides the genome sequence assembly of the International Rice Genome Sequencing Project (IRGSP), manually curated annotation of the sequence, and other genomics information that could be useful for comprehensive understanding of the rice biology. RAP-DB contains clone positions, structures and functions of genes validated by cDNAs, RNA genes detected by massively parallel signature sequencing (MPSS) technology and sequence similarity, flanking sequences of mutant lines, transposable elements, etc. Other annotation data such as Gnomon can be displayed along with those of RAP for comparison.

View all literature mentions

ClustalW (tool)

RRID:SCR_017277

Web sevice of ClustalW provided by DNA data bank of Japan.

View all literature mentions

RAP-DB (tool)

RRID:SCR_006610

Database that provides the genome sequence assembly of the International Rice Genome Sequencing Project (IRGSP), manually curated annotation of the sequence, and other genomics information that could be useful for comprehensive understanding of the rice biology. RAP-DB contains clone positions, structures and functions of genes validated by cDNAs, RNA genes detected by massively parallel signature sequencing (MPSS) technology and sequence similarity, flanking sequences of mutant lines, transposable elements, etc. Other annotation data such as Gnomon can be displayed along with those of RAP for comparison.

View all literature mentions