Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Exosc2 deficiency leads to developmental disorders by causing a nucleotide pool imbalance in zebrafish.

Biochemical and biophysical research communications | 2020

Exosc2 is one of the components of the exosome complex involved in RNA 3' end processing and degradation of various RNAs. Recently, EXOSC2 mutation has been reported in German families presenting short stature, hearing loss, retinitis pigmentosa, and premature aging. However, the in vivo function of EXOSC2 has been elusive. Herein, we generated Exosc2 knockout (exosc2-/-) zebrafish that showed larval lethality 13 days post fertilization, with microcephaly, loss of spinal motor neurons, myelin deficiency, and retinitis pigmentosa. Mechanistically, Exosc2 deficiency caused impaired mRNA turnover, resulting in a nucleotide pool imbalance. Rapamycin, which modulated mRNA turnover by inhibiting the mTOR pathway, improved nucleotide pool imbalance in exosc2-/- zebrafish, resulting in prolonged survival and partial rescue of neuronal defects. Taken together, our findings offer new insights into the disease pathogenesis caused by Exosc2 deficiency, and might help explain fundamental molecular mechanisms in neuronal diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, and spinal muscular atrophy.

Pubmed ID: 33333712 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


CRISPRdirect (tool)

RRID:SCR_018186

Software for designing CRISPR/Cas guide RNA with reduced off target sites. Used for rational design of CRISPR/Cas target. Web server for selecting rational CRISPR/Cas targets from input sequence. Server currently incorporates genomic sequences of human, mouse, rat, marmoset, pig, chicken, frog, zebrafish, Ciona, fruit fly, silkworm, Caenorhabditis elegans, Arabidopsis, rice, Sorghum and budding yeast.

View all literature mentions