Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Investigation of Gene Sequence Divergence, Expression Dynamics, and Endocrine Regulation of the Vitellogenin Gene Family in the Whiteleg Shrimp Litopenaeus vannamei.

Frontiers in endocrinology | 2020

In this report, we studied the vitellogenin gene family in the whiteleg shrimp Litopenaeus vannamei by transcriptomics, bioinformatics, and molecular biology methods. At least three moderately homologous vitellogenin (Vg) genes (i.e. LvVg1, LvVg2, and LvVg3) were identified in the genome. The deduced LvVg proteins consisted of a vitellogenin_N domain, a DUF1943 domain, and a VWD domain typical of most vitellogenins from oviparous animals. LvVg1 was the most abundant Vg expressed in the hepatopancreas and ovary of maturing females. Furthermore, multiple isoforms of LvVg1 were evolved presumably due to the need for rapid Vg production during the rapid phase of vitellogenesis. LvVg transcripts were detected in different larval stages, juveniles, and subadults. During the non-reproductive cycle, LvVg expression in the hepatopancreas peaked at the intermolt stages. During the female vitellogenesis cycle, a two-phase expression pattern of LvVg1 gene was observed in the hepatopancreas and ovary. Moreover, the eyestalk optic nerve, brain, and thoracic ganglion consisted of factors that differentially regulated the expression of the three Vg genes. In addition to their reproduction-related roles, Vg may also be involved in growth and molt-related processes. Phylogenetic analysis revealed the early expansion and separation of these Vg genes, and it is most likely correlated with the expansion of Vg's function. In conclusion, the evolution of multiple LvVg1 isoforms and the acquisition of different Vg genes (i.e. LvVg2 and LvVg3) may occur universally in most decapods. Full information on the total number of Vg genes and precise knowledge on the expression pattern and endocrine regulation of each Vg during all life cycle stages are crucial for us to understand the roles of this emerging gene family in the control of shrimp reproduction and other non-reproductive processes.

Pubmed ID: 33329386 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NetNGlyc (tool)

RRID:SCR_001570

Server that predicts N-Glycosylation sites in human proteins using artificial neural networks that examine the sequence context of Asn-Xaa-Ser/Thr sequons. NetNGlyc 1.0 is also available as a stand-alone software package, with the same functionality as the service above. Ready-to-ship packages exist for the most common UNIX platforms.

View all literature mentions

TherMos (tool)

RRID:SCR_002790

Software used for estimating protein-DNA binding energies from in vivo binding profiles. It is a de novo motif discovery algorithm that exploits the information in transcription factor ChIP-seq or ChIP-exo datasets based on a more natural thermodynamic formalism.

View all literature mentions

SPSS (tool)

RRID:SCR_002865

Software package used for interactive, or batched, statistical analysis in social science, health sciences and marketing. Software platform offers advanced statistical analysis, a library of machine-learning algorithms, text analysis, open-source extensibility, integration with big data and deployment into applications.Versions that were produced by SPSS Inc. before the IBM acquisition (Versions 18 and earlier) would be given origin or publisher of SPSS Inc. in Chicago.

View all literature mentions

NetOGlyc (tool)

RRID:SCR_009026

Server that produces predictions of mucin-type GalNAc O-glycosylation sites in mammalian proteins.

View all literature mentions

Trinity (tool)

RRID:SCR_013048

Software for the efficient and robust de novo reconstruction of transcriptomes from RNA-seq data.

View all literature mentions

SignalP (tool)

RRID:SCR_015644

Web application for prediction of the presence and location of signal peptide cleavage sites in amino acid sequences from different organisms. The method incorporates a prediction of cleavage sites and a signal peptide/non-signal peptide prediction based on a combination of several artificial neural networks.

View all literature mentions

Open Reading Frame Finder (tool)

RRID:SCR_016643

Software tool to search for open reading frames (ORFs) in the DNA sequence. The program returns the range of each ORF, along with its protein translation. Used to search newly sequenced DNA for potential protein encoding segments, verify predicted protein. Limited to the subrange of the query sequence up to 50 kb long.

View all literature mentions

NetPhos (tool)

RRID:SCR_017975

Web tool as artificial neural network method that predicts phosphorylation sites in independent sequences. Web application based on determination of activity of protein kinases using in vitro assays with either naturally occurring peptides or synthetic peptides. NetPhos 3.1 server predicts serine, threonine or tyrosine phosphorylation sites in eukaryotic proteins using ensembles of neural networks. Both generic and kinase specific predictions are performed. Generic predictions are identical to predictions performed by NetPhos 2.0. Kinase specific predictions are identical to predictions by NetPhosK 1.0. NetPhos 3.1 is available as stand-alone software package.

View all literature mentions