Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Engineered Ripening-Specific Accumulation of Polyamines Spermidine and Spermine in Tomato Fruit Upregulates Clustered C/D Box snoRNA Gene Transcripts in Concert with Ribosomal RNA Biogenesis in the Red Ripe Fruit.

Plants (Basel, Switzerland) | 2020

Ripening of tomato fruit leads, in general, to a sequential decrease in the endogenous levels of polyamines spermidine (SPD) and spermine (SPM), while the trend for the diamine putrescine (PUT) levels is generally an initial decrease, followed by a substantial increase, and thereafter reaching high levels at the red ripe fruit stage. However, genetic engineering fruit-specific expression of heterologous yeast S-adenosylmethionine (SAM) decarboxylase in tomato has been found to result in a high accumulation of SPD and SPM at the cost of PUT. This system enabled a genetic approach to determine the impact of increased endogenous levels of biogenic amines SPD and SPM in tomato (579HO transgenic line) and on the biogenesis, transcription, processing, and stability of ribosomal RNA (rRNA) genes in tomato fruit as compared with the non-transgenic 556AZ line. One major biogenetic process regulating transcription and processing of pre-mRNA complexes in the nucleus involves small nucleolar RNAs (snoRNAs). To determine the effect of high levels of SPD and SPM on these latter processes, we cloned, sequenced, and identified a box C/D snoRNA cluster in tomato, namely, SlSnoR12, SlU24a, Slz44a, and Slz132b. Similar to this snoRNA cluster housed on chromosome (Chr.) 6, two other noncoding C/D box genes, SlsnoR12.2 and SlU24b, with a 94% identity to those on Chr. 6 were found located on Chr. 3. We also found that other snoRNAs divisible into snoRNA subclusters A and B, separated by a uridine rich spacer, were decorated with other C/D box snoRNAs, namely, J10.3, Z131a/b, J10.1, and Z44a, followed by z132a, J11.3, z132b, U24, Z20, U24a, and J11. Several of these, for example, SlZ44a, Slz132b, and SlU24a share conserved sequences similar to those in Arabidopsis and rice. RNAseq analysis of high SPD/SPM transgenic tomatoes (579HO line) showed significant enrichment of RNA polymerases, ribosomal, and translational protein genes at the breaker+8 ripening stage as compared with the 556AZ control. Thus, these results indicate that SPD/SPM regulates snoRNA and rRNA expression directly or indirectly, in turn, affecting protein synthesis, metabolism, and other cellular activities in a positive manner.

Pubmed ID: 33291784 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Cytoscape (tool)

RRID:SCR_003032

Software platform for complex network analysis and visualization. Used for visualization of molecular interaction networks and biological pathways and integrating these networks with annotations, gene expression profiles and other state data.

View all literature mentions

HTSeq (tool)

RRID:SCR_005514

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software Python package that provides infrastructure to process data from high-throughput sequencing assays. While the main purpose of HTSeq is to allow you to write your own analysis scripts, customized to your needs, there are also a couple of stand-alone scripts for common tasks that can be used without any Python knowledge.

View all literature mentions

QIAGEN (tool)

RRID:SCR_008539

A commercial organization which provides assay technologies to isolate DNA, RNA, and proteins from any biological sample. Assay technologies are then used to make specific target biomolecules, such as the DNA of a specific virus, visible for subsequent analysis.

View all literature mentions

HISAT2 (tool)

RRID:SCR_015530

Graph-based alignment of next generation sequencing reads to a population of genomes.

View all literature mentions