Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Comparative transcriptome analysis of two rice genotypes differing in their tolerance to saline-alkaline stress.

PloS one | 2020

Saline-alkaline stress is an abiotic stress that suppresses rice plant growth and reduces yield. However, few studies have investigated the mechanism by which rice plants respond to saline-alkaline stress at a global transcriptional level. Dongdao-4 and Jigeng-88, which differ in their tolerance to saline-alkaline stress, were used to explore gene expression differences under saline-alkaline stress by RNA-seq technology. In seedlings of Dongdao-4 and Jigeng-88, 3523 and 4066 genes with differential levels of expression were detected, respectively. A total of 799 genes were upregulated in the shoots of both Dongdao-4 and Jigeng-88, while 411 genes were upregulated in the roots of both genotypes. Among the downregulated genes in Dongdao-4 and Jigeng-88, a total of 453 and 372 genes were found in shoots and roots, respectively. Gene ontology (GO) analysis showed that upregulated genes were enriched in several GO terms such as response to stress, response to jasmonic acid, organic acid metabolic process, nicotianamine biosynthetic process, and iron homeostasis. The downregulated genes were enriched in several GO terms, such as photosynthesis and response to reactive oxygen species. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that Dongdao-4 seedlings were specifically enriched in the biosynthesis of secondary metabolites such as diterpenoids and phenylpropanoids. The upregulated genes that were involved in secondary metabolite biosynthesis, amino acid biosynthesis, betalain biosynthesis, organic acid metabolic process, and iron homeostasis pathways may be central to saline-alkaline tolerance in both rice genotypes. In contrast, the genes involved in the diterpenoid and phenylpropanoid biosynthesis pathways may contribute to the greater tolerance to saline-alkaline stress in Dongdao-4 seedlings than in Jigeng-88. These results suggest that Dongdao-4 was equipped with a more efficient mechanism involved in multiple biological processes to adapt to saline-alkaline stress.

Pubmed ID: 33259539 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Cytoscape (tool)

RRID:SCR_003032

Software platform for complex network analysis and visualization. Used for visualization of molecular interaction networks and biological pathways and integrating these networks with annotations, gene expression profiles and other state data.

View all literature mentions

KEGG (tool)

RRID:SCR_012773

Integrated database resource consisting of 16 main databases, broadly categorized into systems information, genomic information, and chemical information. In particular, gene catalogs in completely sequenced genomes are linked to higher-level systemic functions of cell, organism, and ecosystem. Analysis tools are also available. KEGG may be used as reference knowledge base for biological interpretation of large-scale datasets generated by sequencing and other high-throughput experimental technologies.

View all literature mentions