Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Nimodipine improves cortical efficiency during working memory in healthy subjects.

Translational psychiatry | 2020

The L-type calcium channel gene, CACNA1C, is a validated risk gene for schizophrenia and the target of calcium channel blockers. Carriers of the risk-associated genotype (rs1006737 A allele) have increased frontal cortical activity during working memory and higher CACNA1C mRNA expression in the prefrontal cortex. The aim of this study was to determine how the brain-penetrant calcium channel blocker, nimodipine, changes brain activity during working memory and other cognitive and emotional processes. We conducted a double-blind randomized cross-over pharmacoMRI study of a single 60 mg dose of oral nimodipine solution and matching placebo in healthy men, prospectively genotyped for rs1006737. With performance unchanged, nimodipine significantly decreased frontal cortical activity by 39.1% and parietal cortical activity by 42.8% during the N-back task (2-back > 0-back contrast; PFWE < 0.05; n = 28). Higher peripheral nimodipine concentrations were correlated with a greater decrease in activation in the frontal cortex. Carriers of the risk-associated allele, A (n = 14), had a greater decrease in frontal cortical activation during working memory compared to non-risk allele carriers. No differences in brain activation were found between nimodipine and placebo for other tasks. Future studies should be conducted to test if the decreased cortical brain activity after nimodipine is associated with improved working memory performance in patients with schizophrenia, particularly those who carry the risk-associated genotype. Furthermore, changes in cortical activity during working memory may be a useful biomarker in future trials of L-type calcium channel blockers.

Pubmed ID: 33139710 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SPM (tool)

RRID:SCR_007037

Software package for analysis of brain imaging data sequences. Sequences can be a series of images from different cohorts, or time-series from same subject. Current release is designed for analysis of fMRI, PET, SPECT, EEG and MEG.

View all literature mentions