Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Decorin deficiency promotes epithelial-mesenchymal transition and colon cancer metastasis.

Matrix biology : journal of the International Society for Matrix Biology | 2021

The tumor microenvironment encompasses a complex cellular network that includes cancer-associated fibroblasts, inflammatory cells, neo-vessels, and an extracellular matrix enriched in angiogenic growth factors. Decorin is one of the main components of the tumor stroma, but it is not expressed by cancer cells. Lack of this proteoglycan correlates with down-regulation of E-cadherin and induction of β-catenin signaling. In this study, we investigated the role of a decorin-deficient tumor microenvironment in colon carcinoma progression and metastasis. We utilized an established model of colitis-associated cancer by administering Azoxymethane/Dextran sodium sulfate to adult wild-type and Dcn-/- mice. We discovered that after 12 weeks, all the animals developed intestinal tumors independently of their genotype. However, the number of intestinal neoplasms was significantly higher in the Dcn-/- microenvironment vis-à-vis wild-type mice. Mechanistically, we found that under unchallenged basal conditions, the intestinal epithelium of the Dcn-/- mice showed a significant increase in the protein levels of epithelial-mesenchymal transition associated factors including Snail, Slug, Twist, and MMP2. In comparison, in the colitis-associated cancer evoked in the Dcn-/- mice, we found that intercellular adhesion molecule 1 (ICAM-1) was also significantly increased, in parallel with epithelial-mesenchymal transition signaling pathway-related factors. Furthermore, a combined Celecoxib/decorin treatment revealed a promising therapeutic efficacy in treating human colorectal cancer cells, in decorin-deficient animals. Collectively, our results shed light on colorectal cancer progression and provide a protein-based therapy, i.e., treatment using recombinant decorin, to target the tumor microenvironment.

Pubmed ID: 33065248 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, United States
    Id: R01 CA039481

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Sino Biological (tool)

RRID:SCR_003697

An Antibody supplier

View all literature mentions

SW480 (tool)

RRID:CVCL_0546

Cell line SW480 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

LoVo (tool)

RRID:CVCL_0399

Cell line LoVo is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions