Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Light-Dark Modulates Root Hydrotropism Associated with Gravitropism by Involving Amyloplast Response in Arabidopsis.

Cell reports | 2020

The role of amyloplasts in the interactions between hydrotropism and gravitropism has been previously described. However, the effect of light-dark on the interactions between the two tropisms remains unclear. Here, by developing a method that makes it possible to mimic natural conditions more closely than the conventional lab conditions, we show that hydrotropism is higher in wild-type Arabidopsis seedlings whose shoots are illuminated but whose roots are grown in the dark compared with seedlings that are fully exposed to light. Root gravitropism is substantially decreased because of the reduction of amyloplast content in the root tip with decreased gene expression in PGM1 (a key starch biosynthesis gene), which may contribute to enhanced root hydrotropism under darkness. Furthermore, the starch-deficient mutant pgm1-1 exhibits greater hydrotropism compared with wild-type. Our results suggest that amyloplast response and starch reduction occur under light-dark modulation, followed by decreased gravitropism and enhanced hydrotropism in Arabidopsis root.

Pubmed ID: 32997985 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Gene Ontology (tool)

RRID:SCR_002811

Computable knowledge regarding functions of genes and gene products. GO resources include biomedical ontologies that cover molecular domains of all life forms as well as extensive compilations of gene product annotations to these ontologies that provide largely species-neutral, comprehensive statements about what gene products do. Used to standardize representation of gene and gene product attributes across species and databases.

View all literature mentions

TAIR (tool)

RRID:SCR_004618

Database of genetic and molecular biology data for the model higher plant Arabidopsis thaliana. Data available includes the complete genome sequence along with gene structure, gene product information, metabolism, gene expression, DNA and seed stocks, genome maps, genetic and physical markers, publications, and information about the Arabidopsis research community. Gene product function data is updated every two weeks from the latest published research literature and community data submissions. Gene structures are updated 1-2 times per year using computational and manual methods as well as community submissions of new and updated genes. TAIR also provides extensive linkouts from data pages to other Arabidopsis resources. The data can be searched, viewed and analyzed. Datasets can also be downloaded. Pages on news, job postings, conference announcements, Arabidopsis lab protocols, and useful links are provided.

View all literature mentions