Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Long-Term Musical Training Alters Auditory Cortical Activity to the Frequency Change.

Frontiers in human neuroscience | 2020

Objective: The ability to detect frequency variation is a fundamental skill necessary for speech perception. It is known that musical expertise is associated with a range of auditory perceptual skills, including discriminating frequency change, which suggests the neural encoding of spectral features can be enhanced by musical training. In this study, we measured auditory cortical responses to frequency change in musicians to examine the relationships between N1/P2 responses and behavioral performance/musical training. Methods: Behavioral and electrophysiological data were obtained from professional musicians and age-matched non-musician participants. Behavioral data included frequency discrimination detection thresholds for no threshold-equalizing noise (TEN), +5, 0, and -5 signal-to-noise ratio settings. Auditory-evoked responses were measured using a 64-channel electroencephalogram (EEG) system in response to frequency changes in ongoing pure tones consisting of 250 and 4,000 Hz, and the magnitudes of frequency change were 10%, 25% or 50% from the base frequencies. N1 and P2 amplitudes and latencies as well as dipole source activation in the left and right hemispheres were measured for each condition. Results: Compared to the non-musician group, behavioral thresholds in the musician group were lower for frequency discrimination in quiet conditions only. The scalp-recorded N1 amplitudes were modulated as a function of frequency change. P2 amplitudes in the musician group were larger than in the non-musician group. Dipole source analysis showed that P2 dipole activity to frequency changes was lateralized to the right hemisphere, with greater activity in the musician group regardless of the hemisphere side. Additionally, N1 amplitudes to frequency changes were positively related to behavioral thresholds for frequency discrimination while enhanced P2 amplitudes were associated with a longer duration of musical training. Conclusions: Our results demonstrate that auditory cortical potentials evoked by frequency change are related to behavioral thresholds for frequency discrimination in musicians. Larger P2 amplitudes in musicians compared to non-musicians reflects musical training-induced neural plasticity.

Pubmed ID: 32973478 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MATLAB (tool)

RRID:SCR_001622

Multi paradigm numerical computing environment and fourth generation programming language developed by MathWorks. Allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python. Used to explore and visualize ideas and collaborate across disciplines including signal and image processing, communications, control systems, and computational finance.

View all literature mentions