2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Gα/GSA-1 works upstream of PKA/KIN-1 to regulate calcium signaling and contractility in the Caenorhabditis elegans spermatheca.

PLoS genetics | 2020

Correct regulation of cell contractility is critical for the function of many biological systems. The reproductive system of the hermaphroditic nematode C. elegans contains a contractile tube of myoepithelial cells known as the spermatheca, which stores sperm and is the site of oocyte fertilization. Regulated contraction of the spermatheca pushes the embryo into the uterus. Cell contractility in the spermatheca is dependent on actin and myosin and is regulated, in part, by Ca2+ signaling through the phospholipase PLC-1, which mediates Ca2+ release from the endoplasmic reticulum. Here, we describe a novel role for GSA-1/Gαs, and protein kinase A, composed of the catalytic subunit KIN-1/PKA-C and the regulatory subunit KIN-2/PKA-R, in the regulation of Ca2+ release and contractility in the C. elegans spermatheca. Without GSA-1/Gαs or KIN-1/PKA-C, Ca2+ is not released, and oocytes become trapped in the spermatheca. Conversely, when PKA is activated through either a gain of function allele in GSA-1 (GSA-1(GF)) or by depletion of KIN-2/PKA-R, the transit times and total numbers, although not frequencies, of Ca2+ pulses are increased, and Ca2+ propagates across the spermatheca even in the absence of oocyte entry. In the spermathecal-uterine valve, loss of GSA-1/Gαs or KIN-1/PKA-C results in sustained, high levels of Ca2+ and a loss of coordination between the spermathecal bag and sp-ut valve. Additionally, we show that depleting phosphodiesterase PDE-6 levels alters contractility and Ca2+ dynamics in the spermatheca, and that the GPB-1 and GPB-2 Gβ subunits play a central role in regulating spermathecal contractility and Ca2+ signaling. This work identifies a signaling network in which Ca2+ and cAMP pathways work together to coordinate spermathecal contractions for successful ovulations.

Pubmed ID: 32776941 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM110268

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MATLAB (tool)

RRID:SCR_001622

Multi paradigm numerical computing environment and fourth generation programming language developed by MathWorks. Allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python. Used to explore and visualize ideas and collaborate across disciplines including signal and image processing, communications, control systems, and computational finance.

View all literature mentions

National Institute of General Medical Sciences (tool)

RRID:SCR_012887

NIGMS supports basic biomedical research that is not targeted to specific diseases. NIGMS funds studies on genes, proteins, and cells, as well as on fundamental processes like communication within and between cells, how our bodies use energy, and how we respond to medicines. The results of this research increase our understanding of life and lay the foundation for advances in disease diagnosis, treatment, and prevention. NIGMS also supports research training programs that produce the next generation of biomedical scientists, and it has special programs to encourage underrepresented minorities to pursue biomedical research careers. The National Institute of General Medical Sciences (NIGMS) primarily supports research that lays the foundation for advances in disease diagnosis, treatment, and prevention. The Institute's research training programs help provide the next generation of scientists. Each year, NIGMS-supported scientists make many advances in understanding fundamental life processes. In the course of answering basic research questions, these investigators increase our knowledge about the mechanisms and pathways involved in certain diseases. Institute grantees also develop important new tools and techniques, some of which have medical applications. In recognition of the significance of their work, a number of NIGMS grantees have received the Nobel Prize and other high scientific honors. At any given time, NIGMS supports approximately 4,700 research grants—approximately 11 percent of the grants funded by NIH as a whole. NIGMS also supports approximately 26 percent of the trainees who receive assistance from NIH. NIGMS also supports approximately 25% of the trainees who receive assistance from NIH. The Institute places great emphasis on supporting investigator-initiated research grants. It funds a limited number of research center grants in selected fields, including structural genomics, trauma and burn research, and systems biology. In addition, NIGMS supports several important scientific resources, including the NIGMS Human Genetic Cell Repository and the Protein Data Bank.

View all literature mentions

Microsoft Excel (tool)

RRID:SCR_016137

Software application with data analysis tools and spreadsheet templates to track and visualize data. It is used to manage and process data.

View all literature mentions