Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Altered Temporal Dynamic Intrinsic Brain Activity in Late Blindness.

BioMed research international | 2020

Previous neuroimaging studies demonstrated that visual deprivation triggers significant crossmodal plasticity in the functional and structural architecture of the brain. However, prior neuroimaging studies focused on the static brain activity in blindness. It remains unknown whether alterations of dynamic intrinsic brain activity occur in late blindness (LB). This study investigated dynamic intrinsic brain activity changes in individuals with late blindness by assessing the dynamic amplitude of low-frequency fluctuations (dALFFs) using sliding-window analyses. Forty-one cases of late blindness (LB) (29 males and 12 females, mean age: 39.70 ± 12.66 years) and 48 sighted controls (SCs) (17 males and 31 females, mean age: 43.23 ± 13.40 years) closely matched in age, sex, and education level were enrolled in this study. The dALFF with sliding-window analyses was used to compare the difference in dynamic intrinsic brain activity between the two groups. Compared with SCs, individuals with LB exhibited significantly lower dALFF values in the bilateral lingual gyrus (LING)/calcarine (CAL) and left thalamus (THA). LB cases also showed considerably decreased dFC values between the bilateral LING/CAL and the left middle frontal gyrus (MFG) and between the left THA and the right LING/cerebelum_6 (CER) (two-tailed, voxel-level P < 0.01, Gaussian random field (GRF) correction, cluster-level P < 0.05). Our study demonstrated that LB individuals showed lower-temporal variability of dALFF in the visual cortices and thalamus, suggesting lower flexibility of visual thalamocortical activity, which might reflect impaired visual processing in LB individuals. These findings indicate that abnormal dynamic intrinsic brain activity might be involved in the neurophysiological mechanisms of LB.

Pubmed ID: 32685447 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MATLAB (tool)

RRID:SCR_001622

Multi paradigm numerical computing environment and fourth generation programming language developed by MathWorks. Allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python. Used to explore and visualize ideas and collaborate across disciplines including signal and image processing, communications, control systems, and computational finance.

View all literature mentions

DPABI (tool)

RRID:SCR_010501

Software toolbox for data processing and analysis of brain imaging, evolved from DPARSF (Data Processing Assistant for Resting-State fMRI).

View all literature mentions