Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A rice small GTPase, Rab6a, is involved in the regulation of grain yield and iron nutrition in response to CO2 enrichment.

Journal of experimental botany | 2020

Despite extensive studies on the effects of elevated atmospheric CO2 concentrations ([CO2]) on rice, the molecular mechanisms and signaling events underlying the adaptation of plants remain largely elusive. Here, we report that OsRab6a, which encodes a small GTPase, is involved in the regulation of rice growth, grain yield, and accumulation of iron (Fe) in response to elevated [CO2] (e[CO2]). We generated transgenic plants with OsRab6a-overexpression (-OE) together with OsRab6a-RNAi lines, and found no differences in growth and grain yield among them and wild-type (WT) plants under ambient [CO2] conditions. Under e[CO2] conditions, growth and grain yield of the WT and OsRab6a-OE plants were enhanced, with a greater effect being observed in the latter. In contrast, there were no effects of e[CO2] on growth and grain yield of the OsRab6a-RNAi plants. Photosynthetic rates in both the WT and OsRab6a-OE plants were stimulated by e[CO2], with the magnitude of the increase being higher in OsRab6a-OE plants. Fe concentrations in vegetative tissues and the grain of the WT and transgenic plants were reduced by e[CO2], and the magnitude of the decrease was lower in the OE plants than in the WT and RNAi plants. Genes associated with Fe acquisition in the OsRab6a-OE lines exhibited higher levels of expression than those in the WT and the RNAi lines under e[CO2]. Analysis of our data using Dunnett's multiple comparison test suggested that OsRab6a is an important molecular regulator that underlies the adaptation of rice to e[CO2] by controlling photosynthesis and Fe accumulation.

Pubmed ID: 32525991 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GraphPad Prism (tool)

RRID:SCR_002798

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

View all literature mentions