Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Transcriptome Analysis of Alcohol Drinking in Non-Dependent and Dependent Mice Following Repeated Cycles of Forced Swim Stress Exposure.

Brain sciences | 2020

Chronic stress is a known contributing factor to the development of drug and alcohol addiction. Animal models have previously shown that repeated forced swim stress promotes escalated alcohol consumption in dependent animals. To investigate the underlying molecular adaptations associated with stress and chronic alcohol exposure, RNA-sequencing and bioinformatics analyses were conducted on the prefrontal cortex (CTX) of male C57BL/6J mice that were behaviorally tested for either non-dependent alcohol consumption (CTL), chronic intermittent ethanol (CIE) vapor dependent alcohol consumption, repeated bouts of forced swim stress alone (FSS), and chronic intermittent ethanol with forced swim stress (CIE + FSS). Brain tissue from each group was collected at 0-h, 72-h, and 168-h following the final test to determine long-lasting molecular changes associated with maladaptive behavior. Our results demonstrate unique temporal patterns and persistent changes in coordinately regulated gene expression systems with respect to the tested behavioral group. For example, increased expression of genes involved in "transmitter-gated ion channel activity" was only determined for CIE + FSS. Overall, our results provide a summary of transcriptomic adaptations across time within the CTX that are relevant to understanding the neurobiology of chronic alcohol exposure and stress.

Pubmed ID: 32370184 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAAA NIH HHS, United States
    Id: U24 AA020929
  • Agency: NIAAA NIH HHS, United States
    Id: P50 AA010761
  • Agency: BLRD VA, United States
    Id: I01 BX000813
  • Agency: NIAAA NIH HHS, United States
    Id: U01 AA020926
  • Agency: NIAAA NIH HHS, United States
    Id: R01 AA012404
  • Agency: NIAAA NIH HHS, United States
    Id: U01 AA014095; U24AA20929; P50 AA010761; U01AA020926; R01AA012404; K99AA024836
  • Agency: NIAAA NIH HHS, United States
    Id: U01 AA014095

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Enrichr (tool)

RRID:SCR_001575

A web-based gene list enrichment analysis tool that provides various types of visualization summaries of collective functions of gene lists. It includes new gene-set libraries, an alternative approach to rank enriched terms, and various interactive visualization approaches to display enrichment results using the JavaScript library, Data Driven Documents (D3). The software can also be embedded into any tool that performs gene list analysis. System-wide profiling of genes and proteins in mammalian cells produce lists of differentially expressed genes / proteins that need to be further analyzed for their collective functions in order to extract new knowledge. Once unbiased lists of genes or proteins are generated from such experiments, these lists are used as input for computing enrichment with existing lists created from prior knowledge organized into gene-set libraries.

View all literature mentions

RSeQC (tool)

RRID:SCR_005275

Software package to comprehensively evaluate different aspects of RNA-seq experiments, such as sequence quality, GC bias, polymerase chain reaction bias, nucleotide composition bias, sequencing depth, strand specificity, coverage uniformity and read distribution over the genome structure. RSeQC takes both SAM and BAM files as input, which can be produced by most RNA-seq mapping tools as well as BED files, which are widely used for gene models.

View all literature mentions

HTSeq (tool)

RRID:SCR_005514

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software Python package that provides infrastructure to process data from high-throughput sequencing assays. While the main purpose of HTSeq is to allow you to write your own analysis scripts, customized to your needs, there are also a couple of stand-alone scripts for common tasks that can be used without any Python knowledge.

View all literature mentions

Systems Transcriptional Activity Reconstruction (tool)

RRID:SCR_005622

A next-generation web-based application that aims to provide an integrated solution for both visualization and analysis of deep-sequencing data, along with simple access to public datasets.

View all literature mentions

MultiQC (tool)

RRID:SCR_014982

Data aggregate that compiles results from bioinformatics analyses across multiple samples into a single report. It is written in Python.

View all literature mentions

DESeq2 (tool)

RRID:SCR_015687

Software package for differential gene expression analysis based on the negative binomial distribution. Used for analyzing RNA-seq data for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates.

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions