Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Effects of Graphene Oxide Nanofilm and Chicken Embryo Muscle Extract on Muscle Progenitor Cell Differentiation and Contraction.

Molecules (Basel, Switzerland) | 2020

Finding an effective muscle regeneration technique is a priority for regenerative medicine. It is known that the key factors determining tissue formation include cells, capable of proliferating and/or differentiating, a niche (surface) allowing their colonization and growth factors. The interaction between these factors, especially between the surface of the artificial niche and growth factors, is not entirely clear. Moreover, it seems that the use of a complex of complementary growth factors instead of a few strictly defined ones could increase the effectiveness of tissue maturation, including muscle tissue. In this study, we evaluated whether graphene oxide (GO) nanofilm, chicken embryo muscle extract (CEME), and GO combined with CEME would affect the differentiation and functional maturation of muscle precursor cells, as well as the ability to spontaneously contract a pseudo-tissue muscle. CEME was extracted on day 18 of embryogenesis. Muscle cells obtained from an 8-day-old chicken embryo limb bud were treated with GO and CEME. Cell morphology and differentiation were observed using different microscopy methods. Cytotoxicity and viability of cells were measured by lactate dehydrogenase and Vybrant Cell Proliferation assays. Gene expression of myogenic regulatory genes was measured by Real-Time PCR. Our results demonstrate that CEME, independent of the culture surface, was the main factor influencing the intense differentiation of muscle progenitor cells. The present results, for the first time, clearly demonstrated that the cultured tissue-like structure was capable of inducing contractions without externally applied impulses. It has been indicated that a small amount of CEME in media (about 1%) allows the culture of pseudo-tissue muscle capable of spontaneous contraction. The study showed that the graphene oxide may be used as a niche for differentiating muscle cells, but the decisive influence on the maturation of muscle tissue, especially muscle contractions, depends on the complexity of the applied growth factors.

Pubmed ID: 32340398 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Promega (tool)

RRID:SCR_006724

An Antibody supplier

View all literature mentions

Program to Reduce Incontinence by Diet and Exercise (tool)

RRID:SCR_009018

Randomized controlled trial being conducted at two clinical centers in the United States to learn more about the effects of weight loss on urinary incontinence. About 330 overweight women aged 30 or older will participate and will be followed for 18 months. Efficacy of weight reduction as a treatment for urinary incontinence will be examined at 6 months following the intensive weight control program, and the sustained impact of the intervention will be examined at 18 months. To increase the maintenance of weight reduction and facilitate evaluation of the enduring impact of weight loss on urinary incontinence, they propose to study a motivation-based weight maintenance program. At the end of the intensive weight control program, women randomized to the weight loss program will be randomized to either a 12-month skill-based maintenance intervention or to a motivation-based maintenance intervention. The maintenance interventions maximize the potential for sustained weight loss and will allow them to determine if long-term weight reduction will produce continued improvement in urinary incontinence.

View all literature mentions