2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Downregulation of α-l-fucosidase 1 suppresses glioma progression by enhancing autophagy and inhibiting macrophage infiltration.

Cancer science | 2020

α-l-Fucosidase 1 (FUCA1), a lysosomal enzyme that catalyses the hydrolytic cleavage of the terminal fucose residue, has been reported to be involved in tumorigenesis. However, the clinical significance and biological roles of FUCA1 in glioma remain largely unknown. We analyzed FUCA1 expression according to data in Oncomine, The Cancer Genome Atlas, and Chinese Glioma Genome Atlas databases and further verified FUCA1 expression with immunohistochemistry and real-time PCR analysis in glioma tissues. The results showed that FUCA1 overexpression was significantly associated with high-grade glioma as well as high mortality rates in the survival analysis. Data analyzed in cBioPortal showed that alterations in FUCA1 (1.4%) were correlated with worse survival in glioblastoma multiforme patients. Functional experiments showed that downregulation of FUCA1 suppressed glioma growth in vitro and in vivo. Conversely, overexpression of FUCA1 had the opposite effects on glioma. Mechanistically, transient inhibition of FUCA1 promoted the formation of large acidic vacuoles, as revealed by staining with acridine orange, increased the ratio of LC3-B/LC3-A, and modified the expression of Beclin-1 and Atg12, which are autophagic markers. Upregulation of FUCA1 attenuated starvation-induced autophagy in glioma. In addition, lower levels of tumor-infiltrating macrophages, including CD68+ (-30%), F4/80+ (-50%), and CD11c+ macrophages (-50%), were identified in FUCA1-downregulated glioma tissues, and CCL2/CCL5 neutralizing Abs blocked this effect. These results show that FUCA1 could serve as a potential therapeutic target for the treatment of patients with glioma by enhancing autophagy and inhibiting macrophage infiltration.

Pubmed ID: 32314457 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Cell Signaling Technology (tool)

RRID:SCR_004431

Privately held company that develops and produces antibodies, ELISA kits, ChIP kits, proteomic kits, and other related reagents used to study cell signaling pathways that impact human health.

View all literature mentions

Oncomine Research Platform (tool)

RRID:SCR_007834

Oncomine Research Platform is a partially-commercial suite of products for online cancer gene expression analysis dedicated to the academic and non-profit research community. Oncomine combines a rapidly growing compendium of 20,000+ cancer transcriptome profiles with a sophisticated analysis engine and a powerful web application for data-mining and visualization. Oncomine facilitates rapid and reliable biomarker and therapeutic target discovery, validation and prioritization. Oncomine was developed by physicians, scientists, and software engineers at the University of Michigan and is now fully supported for the academic and non-profit research community by Compendia Bioscience.

View all literature mentions

cBioPortal (tool)

RRID:SCR_014555

A portal that provides visualization, analysis and download of large-scale cancer genomics data sets.

View all literature mentions

UALCAN (tool)

RRID:SCR_015827

Web application and database for analyzing cancer transcriptome data. It also has applications is facilitating tumor subgroup gene expression and survival analyses.

View all literature mentions

TIMER (tool)

RRID:SCR_018737

Web server for comprehensive analysis of tumor infiltrating immune cells. Web tool for systematical analysis of immune infiltrates across diverse cancer types. Allows users to input function specific parameters, with resulting figures dynamically displayed to access tumor immunological, clinical, and genomic features.

View all literature mentions

U-251MG (tool)

RRID:CVCL_0021

Cell line U-251MG is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

BALB/cAnNCrl (tool)

RRID:MGI:2683685

laboratory mouse with name BALB/cAnNCrl from MGI.

View all literature mentions