Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

HIPPIE2: a method for fine-scale identification of physically interacting chromatin regions.

NAR genomics and bioinformatics | 2020

Most regulatory chromatin interactions are mediated by various transcription factors (TFs) and involve physically interacting elements such as enhancers, insulators or promoters. To map these elements and interactions at a fine scale, we developed HIPPIE2 that analyzes raw reads from high-throughput chromosome conformation (Hi-C) experiments to identify precise loci of DNA physically interacting regions (PIRs). Unlike standard genome binning approaches (e.g. 10-kb to 1-Mb bins), HIPPIE2 dynamically infers the physical locations of PIRs using the distribution of restriction sites to increase analysis precision and resolution. We applied HIPPIE2 to in situ Hi-C datasets across six human cell lines (GM12878, IMR90, K562, HMEC, HUVEC, NHEK) with matched ENCODE/Roadmap functional genomic data. HIPPIE2 detected 1042 738 distinct PIRs, with high resolution (average PIR length of 1006 bp) and high reproducibility (92.3% in GM12878). PIRs are enriched for epigenetic marks (H3K27ac, H3K4me1) and open chromatin, suggesting active regulatory roles. HIPPIE2 identified 2.8 million significant PIR-PIR interactions, 27.2% of which were enriched for TF binding sites. 50 608 interactions were enhancer-promoter interactions and were enriched for 33 TFs, including known DNA looping/long-range mediators. These findings demonstrate that the novel dynamic approach of HIPPIE2 (https://bitbucket.com/wanglab-upenn/HIPPIE2) enables the characterization of chromatin and regulatory interactions with high resolution and reproducibility.

Pubmed ID: 32270138 RIS Download

Associated grants

  • Agency: NIGMS NIH HHS, United States
    Id: R01 GM099962
  • Agency: NIA NIH HHS, United States
    Id: T32 AG000255

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


pIRS (tool)

RRID:SCR_002519

Software for de novo data simulation. It uses empirical distribution to reproduce Illumina pair-end reads with real distribution of substitution sequencing errors, quality values and GC%-depth bias.

View all literature mentions

RefSeq (tool)

RRID:SCR_003496

Collection of curated, non-redundant genomic DNA, transcript RNA, and protein sequences produced by NCBI. Provides a reference for genome annotation, gene identification and characterization, mutation and polymorphism analysis, expression studies, and comparative analyses. Accessed through the Nucleotide and Protein databases.

View all literature mentions

Systems Transcriptional Activity Reconstruction (tool)

RRID:SCR_005622

A next-generation web-based application that aims to provide an integrated solution for both visualization and analysis of deep-sequencing data, along with simple access to public datasets.

View all literature mentions

BEDTools (tool)

RRID:SCR_006646

A powerful toolset for genome arithmetic allowing one to address common genomics tasks such as finding feature overlaps and computing coverage. Bedtools allows one to intersect, merge, count, complement, and shuffle genomic intervals from multiple files in widely-used genomic file formats such as BAM, BED, GFF/GTF, VCF. While each individual tool is designed to do a relatively simple task (e.g., intersect two interval files), quite sophisticated analyses can be conducted by combining multiple bedtools operations on the UNIX command line.

View all literature mentions

ENCODE (tool)

RRID:SCR_006793

Encyclopedia of DNA elements consisting of list of functional elements in human genome, including elements that act at protein and RNA levels, and regulatory elements that control cells and circumstances in which gene is active. Enables scientific and medical communities to interpret role of human genome in biology and disease. Provides identification of common cell types to facilitate integrative analysis and new experimental technologies based on high-throughput sequencing. Genome Browser containing ENCODE and Epigenomics Roadmap data. Data are available for entire human genome.

View all literature mentions

Biological General Repository for Interaction Datasets (BioGRID) (tool)

RRID:SCR_007393

Curated protein-protein and genetic interaction repository of raw protein and genetic interactions from major model organism species, with data compiled through comprehensive curation efforts.

View all literature mentions

HUVEC-C (tool)

RRID:CVCL_2959

Cell line HUVEC-C is a Finite cell line with a species of origin Homo sapiens

View all literature mentions

K-562 (tool)

RRID:CVCL_0004

Cell line K-562 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

GM12878 (tool)

RRID:CVCL_7526

Cell line GM12878 is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions