Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Epimedium Polysaccharide Ameliorates Benzene-Induced Aplastic Anemia in Mice.

Evidence-based complementary and alternative medicine : eCAM | 2020

Benzene (BZ) is an important occupational and environmental pollutant. Exposure to BZ may cause aplastic anemia which is characterized as bone marrow hematopoietic failure. In order to reduce the harmful effects of this pollutant, it is necessary to identify additional preventative measures. In this study, we investigated the protective effects of epimedium polysaccharide (EPS), a natural compound with antioxidant and immune-enhancing potency, on aplastic anemia induced by benzene exposure in mice. Male CD-1 mice were randomly divided into five groups including control, BZ (880 mg/kg), LE (EPS low-dose, 20 mg/kg + BZ), ME (EPS middle-dose, 100 mg/kg + BZ), and HE (EPS high-dose, 200 mg/kg + BZ) groups. Animals were exposed to BZ by subcutaneous injection in the presence or absence of EPS via oral administration. All mice were treated 3 times a week for 8 consecutive weeks to develop a mouse model of benzene-induced aplastic anemia (BIAA). Results showed that BZ induced a significant decrease in both white and red blood cells, platelet counts, and hemoglobin level compared with that in the control group (p < 0.01). Treatment of EPS led to a protective effect against these changes particularly in the highest-dose group (HE, p < 0.01). EPS also recovered the decreased number of nucleated cells in peripheral blood cell smears and femur biopsies by BZ exposure. The increased level of reactive oxygen species (ROS) in bone marrow mononuclear cells (BMMNCs) in mice from the BZ group was significantly lower (p < 0.01) in the mice from the highest concentration of EPS (HE) group when compared with that from the control group. In addition, BZ exposure led to a significant increase in the apoptosis rate in BMMNCs which was prevented by EPS in a dose-dependent manner (p < 0.01). The antiapoptosis effect of EPS was through reversing apoptotic proteins such as BAX, Caspase-9 and Caspase-3, and Bcl-2. Finally, EPS treatment partially restored the levels of T cells and the different subtypes except CD80+ and CD86+ compared with the BZ group (HE, p < 0.05). These results suggest that EPS has protective effects against BIAA via antioxidative stress, immune modulation, and antiapoptosis mechanisms.

Pubmed ID: 32256652 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Stata (tool)

RRID:SCR_012763

A Software resource for statistical analysis and presentation of graphics.

View all literature mentions

Abcam (tool)

RRID:SCR_012931

A commercial antibody supplier which supplies primary and secondary antibodies, biochemicals, proteins, peptides, lysates, immunoassays and other kits.

View all literature mentions

Crl:CD1(ICR) (tool)

RRID:IMSR_CRL:022

Mus musculus with name Crl:CD1(ICR) from IMSR.

View all literature mentions