Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Hypoxia-responsive folic acid conjugated glycol chitosan nanoparticle for enhanced tumor targeting treatment.

International journal of pharmaceutics | 2020

Hypoxia is a characteristic feature of various ischemic diseases, including cancer. This study describes the development of glycol chitosan nanoparticles, hydrophobically modified with 4-nitrobenzyl chloroformate and folic acid (FA), that can specifically release drugs under hypoxic conditions. This hypoxia-responsive glycol chitosan nanoparticle conjugated with FA (HRGF) possesses tumor-targeting properties by virtue of conjugated FA and is able to release drugs in a nitroreductase (NTR)-dependent manner because its structure is cleaved by NTR under hypoxic conditions. HRGF nanoparticles showed improved in vivo cancer-targeting ability compared with HRG nanoparticles without FA. In vitro drug release profiles revealed that doxorubicin (DOX)-loaded HRGF (D@HRGF) nanoparticles showed rapid release under hypoxia conditions than normoxic conditions. In vitro cytotoxicity tests and microscopic observations showed that D@HRGF nanoparticles were more toxic towards hypoxic cells than normoxic cells, and that the release of DOX was more effective in hypoxia than normoxia. In vivo, D@HRGF nanoparticles showed more effective antitumor activity in mice compared with D@HRG and free DOX. Collectively, these results show that HRGF nanoparticles function as an effective drug-delivery system in hypoxic conditions. Moreover, these hypoxia-responsive nanoparticles would be effective not only in cancer, but also in other ischemic diseases.

Pubmed ID: 32201251 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


A-549 (tool)

RRID:CVCL_0023

Cell line A-549 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

MCF-7 (tool)

RRID:CVCL_0031

Cell line MCF-7 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

Crl:NU(NCr)-Foxn1nu (tool)

RRID:IMSR_CRL:490

Mus musculus with name Crl:NU(NCr)-Foxn1nu from IMSR.

View all literature mentions