Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The process of somatic hypermutation increases polyreactivity for central nervous system antigens in primary central nervous system lymphoma.

Haematologica | 2021

The immunoglobulin (Ig) heavy and light chain variable gene mutational pattern of the B cell receptor (BCR) in primary central nervous system (CNS) lymphoma (PCNSL) cells suggests antigenic selection to drive pathogenesis and confinement to the CNS. This hypothesis is supported by the observation that the tumor B cell receptor (tBCR) of PCNSL is polyreactive and may be stimulated by CNS proteins. To obtain further insight into the role of the germinal center (GC) reaction on BCR reactivity, we constructed recombinant antibodies (recAb) with Ig heavy and light chain sequences of the corresponding naive BCR (nBCR) by reverting tBCR somatic mutations in 10 PCNSL. Analysis of nBCR-derived recAb reactivity by a protein microarray and immunoprecipitation demonstrated auto- and polyreactivity in all cases. Self-/polyreactivity was not lost during the GC reaction; surprisingly, tBCR significantly increased self-/polyreactivity. In addition to proteins recognized by both the nBCR and tBCR, tBCR gained self-/polyreactivity particularly for proteins expressed in the CNS including proteins of oligodendrocytes/myelin, the S100 protein family, and splicing factors. Thus, in PCNSL pathogenesis, a faulty GC reaction may increase self-/polyreactivity, hereby facilitating BCR signaling via multiple CNS antigens, and may ultimately foster tumor cell survival in the CNS.

Pubmed ID: 32193251 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


IMGT - the international ImMunoGeneTics information system (tool)

RRID:SCR_012780

A high-quality integrated knowledge resource specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility complex (MHC) of human and other vertebrate species, and in the immunoglobulin superfamily (IgSF), MHC superfamily (MhcSF) and related proteins of the immune system (RPI) of vertebrates and invertebrates, serving as the global reference in immunogenetics and immunoinformatics. IMGT provides a common access to sequence, genome and structure Immunogenetics data, based on the concepts of IMGT-ONTOLOGY and on the IMGT Scientific chart rules. IMGT works in close collaboration with EBI (Europe), DDBJ (Japan) and NCBI (USA). IMGT consists of sequence databases, genome database, structure database, and monoclonal antibodies database, Web resources and interactive tools.

View all literature mentions