Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The p66shc-mediated Regulation of Hepatocyte Senescence Influences Hepatic Steatosis in Nonalcoholic Fatty Liver Disease.

Medical science monitor : international medical journal of experimental and clinical research | 2020

BACKGROUND Recent studies have suggested that hepatocyte senescence could contribute to hepatic steatosis and its progression in nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanism causing hepatocyte senescence in this pathological condition is still unclear. A thorough understanding of the mechanism could provide a new target for therapeutic intervention. The purpose of this study was to investigate the role of p66shc in hepatocyte senescence and hepatocyte damage in NAFLD progression. MATERIAL AND METHODS We examined the expression levels of hepatic p66shc and senescence markers in rats and humans with NAFLD, and we assessed the effect of p66shc knockdown or overexpression on senescence and steatosis in human liver cells. RESULTS In this study, we showed that increased hepatic p66shc expression was consistent with upregulated expression of the following senescence markers in NAFLD rats: heterochromatin protein-1-beta (HP1ß), p16, p21, and p53. Furthermore, senescence and steatosis could be induced in hepatoblastoma cell line (HepG2) cells when cells were stimulated with a low concentration of H₂O₂, and this effect was significantly alleviated by knockdown of p66shc. However, overexpression of p66shc could promote senescence and steatosis in L02 cells. Finally, increased hepatic p66shc protein levels correlated with enhanced expression of the senescence marker p21 and mirrored the degree of disease severity in NAFLD patients. CONCLUSIONS Our findings indicated that the increase in hepatocyte senescence and steatosis in NAFLD may be caused by the upregulation of p66shc expression, implying that strategies for p66shc-mediated regulation of hepatocyte senescence may provide new therapeutic tools for NAFLD.

Pubmed ID: 32191680 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SPSS (tool)

RRID:SCR_002865

Software package used for interactive, or batched, statistical analysis in social science, health sciences and marketing. Software platform offers advanced statistical analysis, a library of machine-learning algorithms, text analysis, open-source extensibility, integration with big data and deployment into applications.Versions that were produced by SPSS Inc. before the IBM acquisition (Versions 18 and earlier) would be given origin or publisher of SPSS Inc. in Chicago.

View all literature mentions

Applied Biosystems (tool)

RRID:SCR_005039

An Antibody supplier

View all literature mentions

Hep-G2 (tool)

RRID:CVCL_0027

Cell line Hep-G2 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

SD (tool)

RRID:RGD_70508

Rattus norvegicus with name SD from RGD.

View all literature mentions