Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The Synergistic Effect of Nanocrystals Combined With Ultrasound in the Generation of Reactive Oxygen Species for Biomedical Applications.

Frontiers in bioengineering and biotechnology | 2019

Reactive oxygen species (ROS) effects on living cells and tissues is multifaceted and their level or dose can considerably affect cell proliferation and viability. It is therefore necessary understand their role also designing ways able to regulate their amount inside cells, i.e., using engineered nanomaterials with either antioxidant properties or, for cancer therapy applications, capable to induce oxidative stress and cell death, through tunable ROS production. In this paper, we report on the use of single-crystalline zinc oxide (ZnO) round-shaped nanoparticles, yet ZnO nanocrystals (NCs) functionalized with amino-propyl groups (ZnO-NH2 NCs), combined with pulsed ultrasound (US). We show the synergistic effects produced by NC-assisted US which are able to produce different amount of ROS, as a result of inertial cavitation under the pulsed US exposure. Using Passive Cavitation Detection (PCD) and Electron Paramagnetic Resonance (EPR) spectroscopy, we systematically study which are the key parameters, monitoring, and influencing the amount of generated ROS measuring their concentration in water media and comparing all the results with pure water batches. We thus propose a ROS generation mechanism based on the selective application of US to the ZnO nanocrystals in water solutions. Ultrasound B-mode imaging is also applied, proving in respect to pure water, the enhanced ecographic signal generation of the aqueous solution containing ZnO-NH2 NCs when exposed to pulsed ultrasound. Furthermore, to evaluate the applicability of ZnO-NH2 NCs in the biomedical field, the ROS generation is studied by interposing different tissue mimicking materials, like phantoms and ex vivo tissues, between the US transducer and the sample well. As a whole, we clearly proof the enhanced capability to produce ROS and to control their amount when using ZnO-NH2 NCs in combination with pulsed ultrasound anticipating their applicability in the fields of biology and health care.

Pubmed ID: 32039170 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MATLAB (tool)

RRID:SCR_001622

Multi paradigm numerical computing environment and fourth generation programming language developed by MathWorks. Allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python. Used to explore and visualize ideas and collaborate across disciplines including signal and image processing, communications, control systems, and computational finance.

View all literature mentions

SigmaPlot (tool)

RRID:SCR_003210

Statistical analysis and scientific graphing software for Windows OS.

View all literature mentions

Zeiss LEO 1525 Field Emission Scanning Electron Microscope (tool)

RRID:SCR_018039

Field emission scanning electron microscope that performs ultra high resolution imaging and analysis. Designed for requirements of nano-analysis, chamber of LEO 1525 is capable of accommodating both EDS and full-focusing Wavelength-dispersive X-ray spectroscopy WDS spectrometers as well as rage of other accessories. Coincident and short working distances allow signals from these detectors to be acquired simultaneously.

View all literature mentions