Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Nestin-GFP transgene labels skeletal progenitors in the periosteum.

Bone | 2020

The periosteum is critical for bone repair and contains skeletal stem cells (SSCs), but these cells are still poorly characterized. In the bone marrow, cells expressing the Nes-GFP transgene have been described to be SSCs. Here, we investigated whether Nes-GFP expression also typifies SSCs in the periosteum. We show that in adult mice, Nes-GFP cells are present in the periosteum and localize closely to blood vessels, but periosteal Nes-GFP cells express SSC and progenitor markers differently compared to Nes-GFP cells in the bone marrow. Periosteal Nes-GFP cells show in vitro clonogenicity and tri-lineage differentiation potential and they can form bone in vivo. Shortly after fracture, they start to proliferate and they contribute to the osteoblast pool during the repair process. However, periosteal Nes-GFP cells are not slow dividing nor self-renewing in vivo. These results indicate that in adult mice, periosteal Nes-GFP expressing cells are skeletal progenitors rather than true SSCs, and they participate in the fracture healing process.

Pubmed ID: 32036051 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Cold Spring Harbor Laboratory (tool)

RRID:SCR_008326

Non profit, private research and education institution that performs molecular and genetic research used to generate methods for better diagnostics and treatments for cancer and neurological diseases. Research of cancer causing genes and their respective signaling pathways, mutations and structural variations of the human genome that could cause neurodevelopmental and neurodegenerative illnesses such as autism, schizophrenia, and Alzheimer's and Parkinson's diseases and also research in plant genetics and quantitative biology.

View all literature mentions

Kaluza (tool)

RRID:SCR_016182

Flow cytometry analysis software.

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions