Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Loss of phenotypic inheritance associated with ydcI mutation leads to increased frequency of small, slow persisters in Escherichia coli.

Proceedings of the National Academy of Sciences of the United States of America | 2020

Whenever a genetically homogenous population of bacterial cells is exposed to antibiotics, a tiny fraction of cells survives the treatment, the phenomenon known as bacterial persistence [G.L. Hobby et al., Exp. Biol. Med. 50, 281-285 (1942); J. Bigger, The Lancet 244, 497-500 (1944)]. Despite its biomedical relevance, the origin of the phenomenon is still unknown, and as a rare, phenotypically resistant subpopulation, persisters are notoriously hard to study and define. Using computerized tracking we show that persisters are small at birth and slowly replicating. We also determine that the high-persister mutant strain of Escherichia coli, HipQ, is associated with the phenotype of reduced phenotypic inheritance (RPI). We identify the gene responsible for RPI, ydcI, which encodes a transcription factor, and propose a mechanism whereby loss of phenotypic inheritance causes increased frequency of persisters. These results provide insight into the generation and maintenance of phenotypic variation and provide potential targets for the development of therapeutic strategies that tackle persistence in bacterial infections.

Pubmed ID: 32029596 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: Medical Research Council, United Kingdom
    Id: MR/N007328/1
  • Agency: NIAID NIH HHS, United States
    Id: R01 AI026170
  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: BB/J002097/1
  • Agency: Biotechnology and Biological Sciences Research Council, United Kingdom
    Id: BB/J004243/1
  • Agency: Medical Research Council, United Kingdom
    Id: MR/K001744/1

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


MATLAB (tool)

RRID:SCR_001622

Multi paradigm numerical computing environment and fourth generation programming language developed by MathWorks. Allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, Java, Fortran and Python. Used to explore and visualize ideas and collaborate across disciplines including signal and image processing, communications, control systems, and computational finance.

View all literature mentions