Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Electrostatics of Prokaryotic Ribosome and Its Biological Implication.

Biophysical journal | 2020

Ribosomes are essential machines for protein synthesis in cells. Their structures are very complex but conserved in different species. Because most parts of a ribosome are composed of negatively charged RNAs, its electrostatics should play a fundamental role in the realization of its functions. However, a complete picture of the electrostatics of ribosomes is still absent at present. Here, assisted by the latest version of DelPhi (version 8.4), we illustrate a picture of the electrostatics of a prokaryotic ribosome as well as its molecular chaperones. The revealed electrostatics features are consistent with available experimental data as well as the functions of the ribosome and its molecular chaperones and provides a basis for further studying the mechanism underlying these functions.

Pubmed ID: 32023436 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


DelPhi (tool)

RRID:SCR_008669

DelPhi provides numerical solutions to the Poisson-Boltzmann equation (both linear and nonlinear form) for molecules of arbitrary shape and charge distribution. The current version is fast, accurate, and can handle extremely high lattice dimensions. It also includes flexible features for assigning different dielectric constants to different regions of space and treating systems containing mixed salt solutions. DelPhi takes as input a coordinate file format of a molecule or equivalent data for geometrical objects and/or charge distributions and calculates the electrostatic potential in and around the system, using a finite difference solution to the Poisson-Boltzmann equation. DelPhi is a versatile electrostatics simulation program that can be used to investigate electrostatic fields in a variety of molecular systems. Features of DelPhi include solutions to mixtures of salts of different valence; solutions to different dielectric constants to different regions of space; and estimation of the best relaxation parameter at run time.

View all literature mentions