Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

WWP1 knockout in mice exacerbates obesity-related phenotypes in white adipose tissue but improves whole-body glucose metabolism.

FEBS open bio | 2020

White adipose tissue (WAT) is important for maintenance of homeostasis, because it stores energy and secretes adipokines. The WAT of obese people demonstrates mitochondrial dysfunction, accompanied by oxidative stress, which leads to insulin resistance. WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is a member of the HECT-type E3 family of ubiquitin ligases and is associated with several diseases. Recently, we demonstrated that WWP1 is induced specifically in the WAT of obese mice, where it protects against oxidative stress. Here, we investigated the function of WWP1 in WAT of obese mice by analyzing the phenotype of Wwp1 knockout (KO) mice fed a high-fat diet. The levels of oxidative stress markers were higher in obese WAT from Wwp1 KO mice. Moreover, Wwp1 KO mice had lower activity of citrate synthase, a mitochondrial enzyme. We also measured AKT phosphorylation in obese WAT and found lower levels in Wwp1 KO mice. However, plasma insulin level was low and glucose level was unchanged in obese Wwp1 KO mice. Moreover, both glucose tolerance test and insulin tolerance test were improved in obese Wwp1 KO mice. These findings indicate that WWP1 participates in the antioxidative response and mitochondrial function in WAT, but knockdown of WWP1 improves whole-body glucose metabolism.

Pubmed ID: 31965758 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


RIKEN BioResource Center (tool)

RRID:SCR_003250

RIKEN BRC contributes to advancement of life science research by collecting, preserving and distributing biological resources such as experimental animals, experimental plants, cultured cell lines, genetic materials (DNA), and associated bioinformatics. The RIKEN BRC develops novel bioresources to promote scientific research and new technologies to increase the value of bioresources, and also to implement effective procedures for the preservation, quality control and usage of bioresources. The RIKEN BRC is working closely with institutions in Japan and abroad.

View all literature mentions

Cell Signaling Technology (tool)

RRID:SCR_004431

Privately held company that develops and produces antibodies, ELISA kits, ChIP kits, proteomic kits, and other related reagents used to study cell signaling pathways that impact human health.

View all literature mentions

Wako (tool)

RRID:SCR_013651

An Antibody supplier

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions