Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Autologous Antibody Responses to an HIV Envelope Glycan Hole Are Not Easily Broadened in Rabbits.

Journal of virology | 2020

Extensive studies with subtype A BG505-derived HIV envelope glycoprotein (Env) immunogens have revealed that the dominant autologous neutralizing epitope in rabbits is located in an exposed region of the heavily glycosylated trimer that lacks potential N-linked glycosylation sites at positions 230, 241, and 289. The Env derived from B41, a subtype B virus, shares a glycan hole centered on positions 230 and 289. To test whether broader neutralization to the common glycan hole can be achieved, we immunized rabbits with B41 SOSIP (gp120-gp41 disulfide [SOS] with an isoleucine-to-proline mutation [IP] in gp41) alone, as well as B41 and BG505 coimmunization. We isolated autologous neutralizing antibodies (nAbs) and described their structure in complex with the B41 Env. Our data suggest that distinct autologous nAb lineages are induced by BG505 and B41 immunogens, even when both were administered together. In contrast to previously described BG505 glycan hole antibodies, the B41-specific nAbs accommodate the >97% conserved N241 glycan, which is present in B41. Single-particle cryo-electron microscopy studies confirmed that B41- and BG505-specific nAbs bind to overlapping glycan hole epitopes. We then used our high-resolution data to guide mutations in the BG505 glycan hole epitope in an attempt to broaden the reactivity of a B41-specific nAb, but we recovered only partial binding. Our data demonstrate that the lack of cross-reactivity in glycan hole antibodies is due to amino acid differences within the epitope, and our attempts to rationally design cross-reactive trimers resulted in only limited success. Thus, even for the immunodominant glycan hole shared between BG505 and B41, the prospect of designing prime-boost immunogens remains difficult.IMPORTANCE A glycan hole is one of the most dominant autologous neutralizing epitopes targeted on BG505 and B41 SOSIP trimer-immunized rabbits. Our high-resolution cryo-electron microscopy (cryoEM) studies of B41 in complex with a B41-specific antibody complex elucidate the molecular basis of this strain-specific glycan hole response. We conclude that even for the immunodominant glycan hole shared between BG505 and B41, the prospect of designing prime-boost immunogens remains difficult.

Pubmed ID: 31941772 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIAID NIH HHS, United States
    Id: F31 AI131873
  • Agency: NIAID NIH HHS, United States
    Id: P01 AI110657
  • Agency: NIAID NIH HHS, United States
    Id: UM1 AI100663
  • Agency: NIAID NIH HHS, United States
    Id: UM1 AI144462

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Covance (tool)

RRID:SCR_001224

A contract research organization providing drug development and animal testing services. Under the name Covance Research Products Inc., based in Denver, Pennsylvania, the company also deals in the import, breeding and sale of laboratory animals. It breeds dogs, rabbits, guinea pigs, non-human primates, and pigs, and runs the largest non-human primate laboratory in Germany. (Wikipedia)

View all literature mentions

PRISM (tool)

RRID:SCR_005375

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 5,2022.Tool that predicts interactions between transcription factors and their regulated genes from binding motifs. Understanding vertebrate development requires unraveling the cis-regulatory architecture of gene regulation. PRISM provides accurate genome-wide computational predictions of transcription factor binding sites for the human and mouse genomes, and integrates the predictions with GREAT to provide functional biological context. Together, accurate computational binding site prediction and GREAT produce for each transcription factor: 1. putative binding sites, 2. putative target genes, 3. putative biological roles of the transcription factor, and 4. putative cis-regulatory elements through which the factor regulates each target in each functional role.

View all literature mentions

New England Biolabs (tool)

RRID:SCR_013517

An Antibody supplier

View all literature mentions

Coot (tool)

RRID:SCR_014222

Software for macromolecular model building, model completion and validation, and protein modelling using X-ray data. Coot displays maps and models and allows model manipulations such as idealization, rigid-body fitting, ligand search, Ramachandran plots, non-crystallographic symmetry and more. Source code is available.

View all literature mentions

MolProbity (tool)

RRID:SCR_014226

A structure-validation web application which provides an expert-system consultation about the accuracy of a macromolecular structure model, diagnosing local problems and enabling their correction. MolProbity works best as an active validation tool (used as soon as a model is available and during each rebuild/refine loop) and when used for protein and RNA crystal structures, but it may also work well for DNA, ligands and NMR ensembles. It produces coordinates, graphics, and numerical evaluations that integrate with either manual or automated use in systems such as PHENIX, KiNG, or Coot.

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HEK293-F (tool)

RRID:CVCL_6642

Cell line HEK293-F is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HEK293S (tool)

RRID:CVCL_A784

Cell line HEK293S is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions

HEK293-F (tool)

RRID:CVCL_6642

Cell line HEK293-F is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions