Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Predicting synthetic lethal interactions in human cancers using graph regularized self-representative matrix factorization.

BMC bioinformatics | 2019

Synthetic lethality has attracted a lot of attentions in cancer therapeutics due to its utility in identifying new anticancer drug targets. Identifying synthetic lethal (SL) interactions is the key step towards the exploration of synthetic lethality in cancer treatment. However, biological experiments are faced with many challenges when identifying synthetic lethal interactions. Thus, it is necessary to develop computational methods which could serve as useful complements to biological experiments.

Pubmed ID: 31870274 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


DECIPHER (tool)

RRID:SCR_006552

Interactive database which incorporates a suite of tools designed to aid the interpretation of submicroscopic chromosomal imbalance. Used to enhance clinical diagnosis by retrieving information from bioinformatics resources relevant to the imbalance found in the patient. Contributing to the DECIPHER database is a Consortium, comprising an international community of academic departments of clinical genetics. Each center maintains control of its own patient data (which are password protected within the center''''s own DECIPHER project) until patient consent is given to allow anonymous genomic and phenotypic data to become freely viewable within Ensembl and other genome browsers. Once data are shared, consortium members are able to gain access to the patient report and contact each other to discuss patients of mutual interest, thus facilitating the delineation of new microdeletion and microduplication syndromes.

View all literature mentions