Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Residual Variation Intolerance Score Detects Loci Under Selection in Neuroinvasive Listeria monocytogenes.

Frontiers in microbiology | 2019

Listeria monocytogenes is a Gram-positive bacterium that can be found in a broad range of environments, including soil, food, animals, and humans. L. monocytogenes can cause a foodborne disease manifesting as sepsis and meningo-encephalitis. To evaluate signals of selection within the core genome of neuroinvasive L. monocytogenes strains, we sequenced 122 L. monocytogenes strains from cerebrospinal fluid (CSF) of Dutch meningitis patients and performed a genome-wide analysis using Tajima's D and ω (dN/dS). We also evaluated the residual variation intolerance score (RVIS), a computationally less demanding methodology, to identify loci under selection. Results show that the large genetic distance between the listerial lineages influences the Tajima's D and ω (dN/dS) outcome. Within genetic lineages we detected signals of selection in 6 of 2327 loci (<1%), which were replicated in an external cohort of 105 listerial CSF isolates from France. Functions of identified loci under selection were within metabolism pathways (lmo2476, encoding aldose 1-epimerase), putative antimicrobial resistance mechanisms (lmo1855, encoding PBPD3), and virulence factors (lmo0549, internalin-like protein; lmo1482, encoding comEC). RVIS over the two genetic lineages showed signals of selection in internalin-like proteins loci potentially involved in pathogen-host interaction (lmo0549, lmo0610, and lmo1290). Our results show that RVIS can be used to detect bacterial loci under selection.

Pubmed ID: 31849867 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


SnpEff (tool)

RRID:SCR_005191

Genetic variant annotation and effect prediction software toolbox that annotates and predicts effects of variants on genes (such as amino acid changes). By using standards, such as VCF, SnpEff makes it easy to integrate with other programs.

View all literature mentions

RAxML (tool)

RRID:SCR_006086

Software program for phylogenetic analyses of large datasets under maximum likelihood.

View all literature mentions

Promega (tool)

RRID:SCR_006724

An Antibody supplier

View all literature mentions

Velvet (tool)

RRID:SCR_010755

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software package as de novo genomic assembler for short read sequencing technologies using de Bruijn graphs. Takes in short read sequences, removes errors, then produces high quality unique contigs, retrieves repeated areas between contigs. Can leverage very short reads in combination with read pairs to produce useful assemblies. Operating system Unix/Linux.

View all literature mentions

European Research Council (tool)

RRID:SCR_011216

Independent body that funds investigator-driven frontier research in the European Union (EU). It is part of the Seventh Research Framework Programme (FP7).

View all literature mentions

Prokka (tool)

RRID:SCR_014732

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software tool for the rapid annotation of prokaryotic genomes. It produces GFF3, GBK and SQN files that are ready for editing in Sequin and ultimately submitted to Genbank/DDJB/ENA. A typical 4 Mbp genome can be fully annotated in less than 10 minutes on a quad-core computer, and scales well to 32 core SMP systems.

View all literature mentions