Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Pairing and Exchanging between Daypyrum villosum Chromosomes 6V#2 and 6V#4 in the Hybrids of Two Different Wheat Alien Substitution Lines.

International journal of molecular sciences | 2019

Normal pairing and exchanging is an important basis to evaluate the genetic relationship between homologous chromosomes in a wheat background. The pairing behavior between 6V#2 and 6V#4, two chromosomes from different Dasypyrum villosum accessions, is still not clear. In this study, two wheat alien substitution lines, 6V#2 (6A) and 6V#4 (6D), were crossed to obtain the F1 hybrids and F2 segregating populations, and the testcross populations were obtained by using the F1 as a parent crossed with wheat variety Wan7107. The chromosomal behavior at meiosis in pollen mother cells (PMCs) of the F1 hybrids was observed using a genomic in situ hybridization (GISH) technique. Exchange events of two alien chromosomes were investigated in the F2 populations using nine polymerase chain reaction (PCR) markers located on the 6V short arm. The results showed that the two alien chromosomes could pair with each other to form ring- or rod-shaped bivalent chromosomes in 79.76% of the total PMCs, and most were pulled to two poles evenly at anaphase I. Investigation of the F2 populations showed that the segregation ratios of seven markers were consistent with the theoretical values 3:1 or 1:2:1, and recombinants among markers were detected. A genetic linkage map of nine PCR markers for 6VS was accordingly constructed based on the exchange frequencies and compared with the physical maps of wheat and barley based on homologous sequences of the markers, which showed that conservation of sequence order compared to 6V was 6H and 6B > 6A > 6D. In the testcross populations with 482 plants, seven showed susceptibility to powdery mildew (PM) and lacked amplification of alien chromosomal bands. Six other plants had amplification of specific bands of both the alien chromosomes at multiple sites, which suggested that the alien chromosomes had abnormal separation behavior in about 1.5% of the PMCs in F1, which resulted in some gametes containing two alien chromosomes. In addition, three new types of chromosome substitution were developed. This study lays a foundation for alien allelism tests and further assessment of the genetic relationship among 6V#2, 6V#4, and their wheat homoeologous chromosomes.

Pubmed ID: 31805728 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Ensembl (tool)

RRID:SCR_002344

Collection of genome databases for vertebrates and other eukaryotic species with DNA and protein sequence search capabilities. Used to automatically annotate genome, integrate this annotation with other available biological data and make data publicly available via web. Ensembl tools include BLAST, BLAT, BioMart and the Variant Effect Predictor (VEP) for all supported species.

View all literature mentions

Ensembl Plants (tool)

RRID:SCR_008680

The Ensembl Genomes project produces genome databases for important species from across the taxonomic range, using the Ensembl software system. Five sites are now available, one of which is Ensembl Plants, which houses plant species. Sponsors: EnsembPlants is a project run by EMBL - EBI to maintain annotation on selected genomes, based on the software developed in the Ensembl project developed jointly by the EBI and the Wellcome Trust Sanger Institute.

View all literature mentions

SnapGene (tool)

RRID:SCR_015052

Molecular biology software for visualizing and documenting gene constructs for InFusion cloning, Gibson assembly, restriction cloning, PCR, and mutagenesis.

View all literature mentions