Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Lipase-Catalyzed Chemoselective Ester Hydrolysis of Biomimetically Coupled Aryls for the Synthesis of Unsymmetric Biphenyl Esters.

Molecules (Basel, Switzerland) | 2019

Lipases are among the most frequently used biocatalysts in organic synthesis, allowing numerous environmentally friendly and inexpensive chemical transformations. Here, we present a biomimetic strategy based on iron(III)-catalyzed oxidative coupling and selective ester monohydrolysis using lipases for the synthesis of unsymmetric biphenyl-based esters under mild conditions. The diverse class of biphenyl esters is of pharmaceutical and technical relevance. We explored the potency of a series of nine different lipases of bacterial, fungal, and mammalian origin on their catalytic activities to cleave biphenyl esters, and optimized the reaction conditions, in terms of reaction time, temperature, pH, organic solvent, and water-organic solvent ratios, to improve the chemoselectivity, and hence control the ratio of unsymmetric versus symmetric products. Elevated temperature and increased DMSO content led to an almost exclusive monohydrolysis by the four lipases Candida rugosa lipase (CRL), Mucor miehei lipase (MML), Rhizopus niveus lipase (RNL), and Pseudomonas fluorescens lipase (PFL). The study was complemented by in silico binding predictions to rationalize the observed differences in efficacies of the lipases to convert biphenyl esters. The optimized reaction conditions were transferred to the preparative scale with high yields, underlining the potential of the presented biomimetic approach as an alternative strategy to the commonly used transition metal-based strategies for the synthesis of diverse biphenyl esters.

Pubmed ID: 31771200 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Merck (tool)

RRID:SCR_001287

An American pharmaceutical company aiming to make a difference in the lives of people globally through their medicines, vaccines, biologic therapies and animal health products.

View all literature mentions

AppliChem (tool)

RRID:SCR_005814

An Antibody supplier

View all literature mentions

AutoDock (tool)

RRID:SCR_012746

Software suite of automated docking tools. Designed to predict how small molecules, such as substrates or drug candidates, bind to receptor of known 3D structure. AutoDock consist of AutoDock 4 and AutoDock Vina. AutoDock 4 consists of autodock to perform docking of ligand to set of grids describing target protein, and autogrid to pre calculate these grids.

View all literature mentions