Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Acute effects of methcathinone and manganese in mice: A dose response study.

Heliyon | 2019

An intravenously injectable illicit drug made by mixing pseudoephedrine, potassium permanganate, vinegar and water, yielding methcathinone (Mcat) and manganese (Mn), induces an extrapyramidal syndrome with parkinsonism, dystonia, gait and balance disorders similar to manganism. Although the cause of the syndrome is largely attributed to Mn, the interaction of the drug's individual components is not known and the role of Mcat is possibly underestimated. Aim of the present study was to analyze dose-dependent behavioral effects of the mixture and its two main active components Mcat and Mn in an acute setting and determine the lethal doses of each substance. Three groups of C57BL/6 mice were injected intraperitoneally with (1) the drug mixture containing 10, 25, 50, 100 or 150 mg of Mcat and respectively 1.6, 3.8, 6.9, 17.1 and 22.6 mg of Mn per kilogram of body weight; (2) 10, 25, 50, 100, 150, 200 or 300 mg of racemic Mcat/kg of body weight; (3) MnCl2 10, 25 or 50 mg/kg of body weight. Locomotor activity of the animals, various signs and time of death were recorded. Lower doses (10 and 25 mg/kg) of Mcat had a clear motor activity stimulating effect and this was clearly dose-dependent. High doses of Mcat produced epileptic seizures in 74% of the animals and became lethal with the highest doses. Similarly, the mixture had a clear dose-dependent stimulating effect and the higher doses became lethal. The LD50 of the pseudoephedrine mixture was 110.2 mg of Mcat/kg and for pure Mcat 201.7 mg/kg. Mn did not prove to be lethal in doses up to 50 mg/kg, but had a strong dose dependent inhibitory effect on the animals' behavior. Our data reveal that both Mn and Mcat have a significant role in the toxicity of the mixture.

Pubmed ID: 31687570 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PRISM (tool)

RRID:SCR_005375

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 5,2022.Tool that predicts interactions between transcription factors and their regulated genes from binding motifs. Understanding vertebrate development requires unraveling the cis-regulatory architecture of gene regulation. PRISM provides accurate genome-wide computational predictions of transcription factor binding sites for the human and mouse genomes, and integrates the predictions with GREAT to provide functional biological context. Together, accurate computational binding site prediction and GREAT produce for each transcription factor: 1. putative binding sites, 2. putative target genes, 3. putative biological roles of the transcription factor, and 4. putative cis-regulatory elements through which the factor regulates each target in each functional role.

View all literature mentions

Millipore (tool)

RRID:SCR_008983

An Antibody supplier

View all literature mentions

MassLynx (tool)

RRID:SCR_014271

Software which can acquire, analyze, manage, and share mass spectrometry data. MassLynx controls any Waters mass spectrometry system, from sample and solvent management components to mass spectrometer and auxiliary detectors. The software can acquire nominal mass, exact mass, MS/MS and exact mass MS/MS data. The software system also maintains and consolidates all user sample data. Optional Application Manager programs provide additional information for specific MS analyses and data.

View all literature mentions

C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions