Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A Diet Induced Maladaptive Increase in Hepatic Mitochondrial DNA Precedes OXPHOS Defects and May Contribute to Non-Alcoholic Fatty Liver Disease.

Cells | 2019

Non-alcoholic fatty liver disease (NAFLD), an increasingly prevalent and underdiagnosed disease, is postulated to be caused by hepatic fat mediated pathological mechanisms. Mitochondrial dysfunction is proposed to be involved, but it is not known whether this is a pathological driver or a consequence of NAFLD. We postulate that changes to liver mitochondrial DNA (mtDNA) are an early event that precedes mitochondrial dysfunction and irreversible liver damage. To test this hypothesis, we evaluated the impact of diet on liver steatosis, hepatic mtDNA content, and levels of key mitochondrial proteins. Liver tissues from C57BL/6 mice fed with high fat (HF) diet (HFD) and Western diet (WD, high fat and high sugar) for 16 weeks were used. Steatosis/fibrosis were assessed using haematoxylin and eosin (H&E) Oil Red and Masson's trichome staining and collagen content. Total DNA was isolated, and mtDNA content was determined by quantifying absolute mtDNA copy number/cell using quantitative PCR. Selected mitochondrial proteins were analysed from a proteomics screen. As expected, both HFD and WD resulted in steatosis. Mouse liver contained a high mtDNA content (3617 ± 233 copies per cell), which significantly increased in HFD diet, but this increase was not functional, as indicated by changes in mitochondrial proteins. In the WD fed mice, liver dysfunction was accelerated alongside downregulation of mitochondrial oxidative phosphorylation (OXPHOS) and mtDNA replication machinery as well as upregulation of mtDNA-induced inflammatory pathways. These results demonstrate that diet induced changes in liver mtDNA can occur in a relatively short time; whether these contribute directly or indirectly to subsequent mitochondrial dysfunction and the development of NAFLD remains to be determined. If this hypothesis can be substantiated, then strategies to prevent mtDNA damage in the liver may be needed to prevent development and progression of NAFLD.

Pubmed ID: 31597406 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


C57BL/6J (tool)

RRID:IMSR_JAX:000664

Mus musculus with name C57BL/6J from IMSR.

View all literature mentions