Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Unraveling Binding Mechanism of Alzheimer's Drug Rivastigmine Tartrate with Human Transferrin: Molecular Docking and Multi-Spectroscopic Approach towards Neurodegenerative Diseases.

Biomolecules | 2019

Studying drug-protein interactions has gained significant attention lately, and this is because the majority of drugs interact with proteins, thereby altering their structure and, moreover, their functionality. Rivastigmine tartrate (RT) is a drug that is in use for mild to moderate Alzheimer therapy. This study was targeted to characterize the interaction between human transferrin (hTf) and RT by employing spectroscopy, isothermal titration calorimetry (ITC), and molecular docking studies. Experimental results of fluorescence quenching of hTf induced by RT implied the formation of a static complex between hTf and RT. Further elucidation of the observed fluorescence data retorting Stern-Volmer and modified Stern-Volmer resulted in binding constants for hTf-RT complex of the order 104 M-1 over the studied temperatures. Thermodynamic parameters of hTf-RT interaction were elucidated further by employing these obtained binding constant values. It was quite evident from obtained thermodynamic attributes that RT spontaneously binds to hTf with a postulated existence of hydrogen bonding or Van der Waals forces. Further, Circular dichroism spectroscopy (CD) also confirmed RT-hTf complex formation owing to upward movement of CD spectra in the presence of RT. ITC profiles advocated the existence of reaction to be spontaneous. Moreover, molecular docking further revealed that the important residues play a pivotal role in RT-hTf interaction. The findings of this study can be of a significant benefit to the drug-designing industry in this disease-prone era.

Pubmed ID: 31533274 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PubChem (tool)

RRID:SCR_004284

Collection of information about chemical structures and biological properties of small molecules and siRNA reagents hosted by the National Center for Biotechnology Information (NCBI).

View all literature mentions

AutoDock (tool)

RRID:SCR_012746

Software suite of automated docking tools. Designed to predict how small molecules, such as substrates or drug candidates, bind to receptor of known 3D structure. AutoDock consist of AutoDock 4 and AutoDock Vina. AutoDock 4 consists of autodock to perform docking of ligand to set of grids describing target protein, and autogrid to pre calculate these grids.

View all literature mentions