Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Minimal Inhibitory Concentration (MIC)-Phenomena in Candida albicans and Their Impact on the Diagnosis of Antifungal Resistance.

Journal of fungi (Basel, Switzerland) | 2019

Antifungal susceptibility testing (AFST) of clinical isolates is a tool in routine diagnostics to facilitate decision making on optimal antifungal therapy. The minimal inhibitory concentration (MIC)-phenomena (trailing and paradoxical effects (PXE)) observed in AFST complicate the unambiguous and reproducible determination of MICs and the impact of these phenomena on in vivo outcome are not fully understood. We aimed to link the MIC-phenomena with in vivo treatment response using the alternative infection model Galleria mellonella. We found that Candida albicans strains exhibiting PXE for caspofungin (CAS) had variable treatment outcomes in the Galleria model. In contrast, C. albicans strains showing trailing for voriconazole failed to respond in vivo. Caspofungin- and voriconazole-susceptible C. albicans strains responded to the respective antifungal therapy in vivo. In conclusion, MIC data and subsequent susceptibility interpretation of strains exhibiting PXE and/or trailing should be carried out with caution, as both effects are linked to drug adaptation and treatment response is uncertain to predict.

Pubmed ID: 31487830 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


PRISM (tool)

RRID:SCR_005375

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 5,2022.Tool that predicts interactions between transcription factors and their regulated genes from binding motifs. Understanding vertebrate development requires unraveling the cis-regulatory architecture of gene regulation. PRISM provides accurate genome-wide computational predictions of transcription factor binding sites for the human and mouse genomes, and integrates the predictions with GREAT to provide functional biological context. Together, accurate computational binding site prediction and GREAT produce for each transcription factor: 1. putative binding sites, 2. putative target genes, 3. putative biological roles of the transcription factor, and 4. putative cis-regulatory elements through which the factor regulates each target in each functional role.

View all literature mentions