Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Molecular cloning and functional characterization of duck TYK2.

Developmental and comparative immunology | 2020

Tyrosine kinase 2 (TYK2), a member of Janus kinase family, has been identified as a crucial protein in signal transduction initiated by interferons or interleukins in mammals. However, the function of avian TYK2 in innate immune response remains largely unknown. In this study, the full-length duck TYK2 (duTYK2) cDNA was cloned for the first time, which encoded a putative protein of 1187 amino acid residues and showed the high sequence similarity with bald eagle, crested ibis, and white-tailed tropicbird TYK2s. The duTYK2 was widely expressed in all examined tissues of healthy ducks and showed diffuse cytoplasmic localization in duck embryo fibroblasts (DEFs). Overexpression of duTYK2 significantly enhanced ISRE promoter activity and induced the expression of viperin, PKR, 2',5'-OAS, Mx and ZAP in DEFs. The C-terminal kinase domain of duTYK2 is essential for duTYK2-mediated ISRE promoter activation. Furthermore, knockdown of duTYK2 dramatically decreased duck Tembusu virus (DTMUV)-, duck enteritis virus (DEV)-, poly(I:C)- or poly(dA:dT)-induced ISRE promoter activation. Additionally, duTYK2 expression exhibited antiviral activity against DTMUV. These results indicated that duTYK2 played a critical role in duck antiviral innate immunity.

Pubmed ID: 31437526 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


BioGPS: The Gene Portal Hub (tool)

RRID:SCR_006433

An extensible and customizable gene annotation portal that emphasizes community extensibility and user customizability. It is a complete resource for learning about gene and protein function. Community extensibility reflects a belief that any BioGPS user should be able to add new content to BioGPS using the simple plugin interface, completely independently of the core developer team. User customizability recognizes that not all users are interested in the same set of gene annotation data, so the gene report layouts enable each user to define the information that is most relevant to them. Currently, BioGPS supports eight species: Human (Homo sapiens), Mouse (Mus musculus), Rat (Rattus norvegicus), Fruitfly (Drosophila melanogaster), Nematode (Caenorhabditis elegans), Zebrafish (Danio rerio), Thale-cress (Arabidopsis thaliana), Frog (Xenopus tropicalis), and Pig (Sus scrofa). BioGPS presents data in an ortholog-centric format, which allows users to display mouse plugins next to human ones. Our data for defining orthologs comes from NCBI's HomoloGene database.

View all literature mentions

Semi-Manual Alignment to Reference Templates (tool)

RRID:SCR_019265

Software tool that extends WholeBrain framework in R for segmenting and registering experimental images to Allen Mouse Common Coordinate Framework (CCF). Streamlines processing of large volumetric LSFM datasets and solves issues with non-uniform morphing across anterior-posterior axis with interactive “choice game.” Accounts for duplicate cell counts in adjacent z images and presents new ways to easily parse apart and interactively visualize final mapped datasets.

View all literature mentions