Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Expression and Role of Methylenetetrahydrofolate Dehydrogenase 1 Like (MTHFD1L) in Bladder Cancer.

Translational oncology | 2019

Cancer cells utilize vitamin folate to fulfill their excessive demand for nucleotides and amino acids. Dihydrofolate reductase (DHFR), an enzyme involved in folate metabolism converts dihydrofolate into tetrahydrofolate, which is required for the de novo synthesis of purines, and certain amino acids. DHFR inhibitors are used as a chemotherapeutic agent. Cancer sequencing analysis has identified additional enzymes in folate metabolism that are dysregulated in cancer. Methylenetetrahydrofolate dehydrogenase 1 like (MTHFD1L), one such enzyme is overexpressed in bladder cancer. MTHFD1L is a mitochondrial enzyme involved in the folate cycle by catalyzing the reaction of formyl-tetrahydrofolate to formate and tetrahydrofolate (THF). THF is crucial for de novo purine and thymidylate synthesis and is also involved in the regeneration of methionine. Cancer cells rely on purines derived from the de novo pathway for the nucleotides whereas normal cells favor the salvage pathway. In this study we examined MTHFD1L expression in bladder cancer. By using publicly available cancer transcriptome data analysis web-portal UALCAN, we found overexpression of MTHFD1L in bladder cancer and expression was associated with overall survival. RT-PCR and immunoblot analysis confirmed the overexpression of MTHFD1L in muscle invasive bladder cancer tissues compared to normal urothelium. Furthermore, our investigations suggested a critical role for MTHFD1L in bladder cancer cell proliferation, colony formation and invasion. Thus, in this study, we show the significance of the folate metabolic enzyme MTHFD1L in aggressive bladder cancers and suggest that being an enzyme, MTHFD1L serves as a valuable therapeutic target.

Pubmed ID: 31401334 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


ATCC (tool)

RRID:SCR_001672

Global nonprofit biological resource center (BRC) and research organization that provides biological products, technical services and educational programs to private industry, government and academic organizations. Its mission is to acquire, authenticate, preserve, develop and distribute biological materials, information, technology, intellectual property and standards for the advancement and application of scientific knowledge. The primary purpose of ATCC is to use its resources and experience as a BRC to become the world leader in standard biological reference materials management, intellectual property resource management and translational research as applied to biomaterial development, standardization and certification. ATCC characterizes cell lines, bacteria, viruses, fungi and protozoa, as well as develops and evaluates assays and techniques for validating research resources and preserving and distributing biological materials to the public and private sector research communities.

View all literature mentions

Thermo Fisher Scientific (tool)

RRID:SCR_008452

Commercial vendor and service provider of laboratory reagents and antibodies. Supplier of scientific instrumentation, reagents and consumables, and software services.

View all literature mentions

Millipore (tool)

RRID:SCR_008983

An Antibody supplier

View all literature mentions

Sigma-Aldrich (tool)

RRID:SCR_008988

American chemical, life science and biotechnology company owned by Merck KGaA. Merger of Sigma Chemical Company and Aldrich Chemical Company. Provides organic and inorganic chemicals, building blocks, reagents, advanced materials and stable isotopes for chemical synthesis, medicinal chemistry and materials science, antibiotics, buffers, carbohydrates, enzymes, forensic tools, hematology and histology, nucleotides, proteins, peptides, amino acids and their derivatives.

View all literature mentions

UALCAN (tool)

RRID:SCR_015827

Web application and database for analyzing cancer transcriptome data. It also has applications is facilitating tumor subgroup gene expression and survival analyses.

View all literature mentions