Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Drug-resistant endothelial cells facilitate progression, EMT and chemoresistance in nasopharyngeal carcinoma via exosomes.

Cellular signalling | 2019

Recent antitumor drug development has included investigation of a wide variety of anti-angiogenesis therapies. Because cancer cells in tumors require new blood vessels to grow and spread, they stimulate capillary proliferation from existing vessels as well as new vessel formation from endothelial precursor cells. Our previous findings suggested that drug resistance in mouse endothelial cells supported tumor growth, but the relationship between endothelial cells (ECs) and nasopharyngeal carcinoma (NPC) cells remained unclear. Exosomes are small membrane vesicles that are released by several cell types, including human microvascular ECs (HMECs). Exosomes carrying membrane and cytoplasmic constituents have been described as participants in a novel mechanism of cell-to-cell communication. In the present study, we investigated the mechanisms underlying the interactions between HMECs and NPC cells. We found that drug-resistant HMECs secreted small heterogeneous 40-100 nm vesicles, defined as exosomes. Co-incubation of NPC cells with doxorubicin-resistant (R-DOX) HMEC-derived exosomes resulted in promotion of their proliferation, migration, and chemoresistance, as well as changes in the expression of epithelial-mesenchymal transition (EMT) markers. These effects were significantly inhibited by treatment with GW4869 (an exosome inhibitor). We also found that GW4869 inhibited the stimulation of drug-resistant HMECs on NPC progression by modulating EMT in vivo. These data suggest that exosomes participate in a novel mechanism by which drug-resistant ECs enhance NPC progression.

Pubmed ID: 31394194 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Kaluza (tool)

RRID:SCR_016182

Flow cytometry analysis software.

View all literature mentions

NU/J (tool)

RRID:IMSR_JAX:002019

Mus musculus with name NU/J from IMSR.

View all literature mentions