Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Ergosterol peroxide suppresses influenza A virus-induced pro-inflammatory response and apoptosis by blocking RIG-I signaling.

European journal of pharmacology | 2019

Ergosterol peroxide has been shown to exhibit anti-tumor, antioxidant and anti-bacterial properties. However, the effects of ergosterol peroxide isolated from the herbal Baphicacanthus cusia root on influenza virus infection remain poorly understood. In the present study, ergosterol peroxide (compound 22) was obtained from the B. cusia root and subjected to investigation regarding its immunoregulatory effect on influenza A virus (IAV)-induced inflammation in A549 human alveolar epithelial cells. The structure of compound 22 isolated from B. cusia root. was elucidated by NMR analyses. Structure determination showed that the chemical structure of compound 22 closely resembles that of ergosterol peroxide. We observed that ergosterol peroxide treatment significantly suppressed IAV-induced upregulation of RIG-I expression. Additionally, ergosterol peroxide inhibited the activation of RIG-I downstream signaling pathways, including p38 MAP kinase and NF-κB, which ultimately resulted in the reduced production of an array of pro-inflammatory mediators and interferons (IFN-β and IFN-λ1). Interestingly, inhibitory effects of ergosterol peroxide on the expression of IFNs did not affect the expression of antiviral effectors or enhance viral replication. On the other hand, ergosterol peroxide effectively abolished the amplified production of pro-inflammatory mediators in cells pretreated with IFN-β (500 ng/ml) prior to IAV infection. Moreover, Annexin V and Hoechst 33258 staining revealed that increased apoptosis of IAV-infected cells was reversed by the presence of ergosterol peroxide. Our findings suggest that ergosterol peroxide from the B. cusia root suppressed IAV-associated inflammation and apoptosis via blocking RIG-I signaling, which may serve as a supplementary approach to the treatment of influenza.

Pubmed ID: 31323223 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


A-549 (tool)

RRID:CVCL_0023

Cell line A-549 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

A-549 (tool)

RRID:CVCL_0023

Cell line A-549 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions

MDCK (tool)

RRID:CVCL_0422

Cell line MDCK is a Spontaneously immortalized cell line with a species of origin Canis lupus familiaris

View all literature mentions

HEK293T (tool)

RRID:CVCL_0063

Cell line HEK293T is a Transformed cell line with a species of origin Homo sapiens (Human)

View all literature mentions