Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mirtazapine increases glial cell line-derived neurotrophic factor production through lysophosphatidic acid 1 receptor-mediated extracellular signal-regulated kinase signaling in astrocytes.

European journal of pharmacology | 2019

Different classes of antidepressants, such as tricyclic antidepressants, selective serotonin reuptake inhibitor (SSRI), and serotonin and norepinephrine reuptake inhibitor (SNRI), have been shown to increase GDNF production in astrocytes, which could be a key mechanism of the psychotropic effect of antidepressants. The antidepressant mirtazapine is a noradrenaline and specific serotonergic antidepressant (NaSSA) and does not block reuptake of catecholamines and serotonin. The present study examined the effect of mirtazapine on GDNF expression in rat C6 astroglial cells (C6 cells) and rat primary cultured cortical astrocytes (primary astrocytes). Mirtazapine treatment significantly increased GDNF mRNA expression and GDNF release in both C6 cells and primary astrocytes. In primary astrocytes, mirtazapine also increased the expressions of brain-derived neurotrophic factor mRNA. To mimic mirtazapine's putative mechanism of action, cells were treated with either a α2-adrenoceptor antagonist (yohimbine), 5-HT2 receptor antagonist (ketanserin), 5-HT3 receptor antagonist (ondansetron), or a mixture of these--no effect on GDNF mRNA expression was observed. Mirtazapine treatment increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, and the mirtazapine-induced GDNF and BDNF expression were blocked by MAPK/ERK kinase (MEK) inhibitor (U0126). Furthermore, the effect of mirtazapine on ERK phosphorylation and expressions of GDNF and BDNF was antagonized by Gi/o inhibitor (pertussis toxin), lysophosphatidic acid-1 (LPA1) receptor antagonist (AM966), and LPA1/LPA3 receptors antagonist (Ki16425). The current findings demonstrate that the NaSSA mirtazapine, similar to other classes of antidepressants, increases GDNF expression through a Gi/o coupled LPA1 receptor-mediated ERK pathway. The current findings suggest a general mechanism underlying the psychotropic effect antidepressants.

Pubmed ID: 31306636 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


WI (tool)

RRID:RGD_13508588

Rattus norvegicus with name WI from RGD.

View all literature mentions