Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Fructose-1,6-bisphosphate aldolase is involved in Mycoplasma bovis colonization as a fibronectin-binding adhesin.

Research in veterinary science | 2019

Mycoplasma bovis is a common pathogenic microorganism of cattle and represents an important hazard on the cattle industry. Adherence to host cells is a significant component of mycoplasma-pathogenesis research. Fibronectin (Fn), an extracellular matrix protein, is a common host cell factor that can interact with the adhesions of pathogens. The aims of this study were to investigate the Fn-binding properties of M. bovis fructose-1,6-bisphosphate aldolase (FBA) and evaluate its role as a cell adhesion factor during mycoplasma colonization. The fba (MBOV_RS00435) gene of M. bovis was cloned and expressed, with the resulting recombinant protein used to prepare rabbit polyclonal antibodies. The purified recombinant FBA (rFBA) was shown to have fructose bisphosphate aldolase activity. Western blot indicated that FBA was an antigenically conserved protein in several M. bovis strains. Western blot combined with immunofluorescent assay (IFA) revealed that FBA was dual-localized to both cytoplasm and membrane in M. bovis. IFA showed that rFBA was able to adhere to embryonic bovine lung (EBL) cells. Meanwhile, an adhesion inhibition assay demonstrated that anti-rFBA antibodies could significantly block the adhesion of M. bovis to EBL cells. Moreover, a dose-dependent binding of rFBA to Fn was found by dot blotting and enzyme-linked immunosorbent assays. Together these results provided evidence that FBA is a surface-localized and antigenic protein of M. bovis, suggesting that it may function as a virulence determinant through interacting with host Fn.

Pubmed ID: 30852357 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Cell Signaling Technology (tool)

RRID:SCR_004431

Privately held company that develops and produces antibodies, ELISA kits, ChIP kits, proteomic kits, and other related reagents used to study cell signaling pathways that impact human health.

View all literature mentions

ExPASy Bioinformatics Resource Portal (tool)

RRID:SCR_012880

Portal which provides access to scientific databases and software tools (i.e., resources) in different areas of life sciences including proteomics, genomics, phylogeny, systems biology, population genetics, transcriptomics etc. It contains resources from many different SIB groups as well as external institutions.

View all literature mentions

SignalP (tool)

RRID:SCR_015644

Web application for prediction of the presence and location of signal peptide cleavage sites in amino acid sequences from different organisms. The method incorporates a prediction of cleavage sites and a signal peptide/non-signal peptide prediction based on a combination of several artificial neural networks.

View all literature mentions

oligo (tool)

RRID:SCR_015729

Software package to analyze oligonucleotide arrays (expression/SNP/tiling/exon) at probe-level. It currently supports Affymetrix (CEL files) and NimbleGen arrays (XYS files).

View all literature mentions