Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Subcellular localization of mutated β-catenins with different incidences of cis-peptide bonds at the Xaa246-P247 site in HepG2 cells.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology | 2019

Mutations may ultimately change the local conformation of proteins; however, little attention has been paid to alterations in protein function caused by the incidence of cis-peptide bonds (ICPB) in mammalian cells. In this study, a statistical approach, coimmunoprecipitation, and immunofluorescence staining have been used to confirm that S246→Y and S246→W missense mutations, which help increase the ICPB in Xaa246-P247 (Xaa is any amino acid) in human β-catenin, can reduce the interactions between β-catenin and adenomatous polyposis coli (APC) and between β-catenin and Ca2+-dependent cell adhesion molecule family in epithelial tissue (E-cadherin), eventually leading to increased nuclear migration of β-catenin in the HepG2 cell line (an immortalized cell line consisting of human liver carcinoma cells). Conversely, S246→L and S246→M missense mutations, which reduce the ICPB in Xaa246-P247 in human β-catenin, can enhance interactions between β-catenin and APC and between β-catenin and E-cadherin, leading to decreased nuclear migration of β-catenin. These results not only indicate that a change in the ICPB may be an important cause of functional protein changes but also provide a new basis for the study of genetic disease prediction, gene diagnosis, individualized treatment, and protein modification at the gene level for clinicians and other professionals.-Yu, S., Zhang, Y., Wu, Y., Yang, H., Chen, Y., Yang, Y., Zhang, Z. Subcellular localization of mutated β-catenins with different incidences of cis-peptide bonds at the Xaa246-P247 site in HepG2 cells.

Pubmed ID: 30807699 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Addgene (tool)

RRID:SCR_002037

Non-profit plasmid repository dedicated to helping scientists around the world share high-quality plasmids. Facilitates archiving and distributing DNA-based research reagents and associated data to scientists worldwide. Repository contains over 65,000 plasmids, including special collections on CRISPR, fluorescent proteins, and ready-to-use viral preparations. There is no cost for scientists to deposit plasmids, which saves time and money associated with shipping plasmids themselves. All plasmids are fully sequenced for validation and sequencing data is openly available. We handle the appropriate Material Transfer Agreements (MTA) with institutions, facilitating open exchange and offering intellectual property and liability protection for depositing scientists. Furthermore, we curate free educational resources for the scientific community including a blog, eBooks, video protocols, and detailed molecular biology resources.

View all literature mentions

Hep-G2 (tool)

RRID:CVCL_0027

Cell line Hep-G2 is a Cancer cell line with a species of origin Homo sapiens (Human)

View all literature mentions