Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Association of Chlamydia trachomatis, C. pneumoniae, and IL-6 and IL-8 Gene Alterations With Heart Diseases.

Frontiers in immunology | 2019

Atherosclerosis is a progressive disease characterized by chronic inflammation of the arterial walls, associated with genetic and infectious factors. The present study investigated the involvement of Chlamydia trachomatis and Chlamydia pneumoniae infections and immunological markers (C-reactive protein, CRP, TNF-α, IL-6, IL-8, and IL-10) in the process of atherosclerosis. The evaluation included 159 patients for surgical revascularization (CAD) and 71 patients for surgical heart valve disease (HVD) at three hospitals in Belém, Brazil. The control group (CG) comprised 300 healthy individuals. Blood samples collected before surgery were used for antibodies detection (enzyme immunoassay), CRP (immunoturbidimetry) and IL-6 levels (enzyme immunoassay). Tissue fragments (atheroma plaque, heart valve and ascending aorta) were collected during surgery and subjected to qPCR for detection of bacterial DNA. Promoter region polymorphisms of each marker and relative quantification of TNF-α, IL-8, and IL-10 gene expression were performed. Demography and social information were similar to the general population involved with both diseases. Antibody prevalence to C. trachomatis was 30.6, 20.3, and 36.7% (in the CAD, HVD, and CG, respectively) and to C. pneumoniae was 83.6, 84.5, and 80.3% (in the CAD, HVD, and CG, respectively). C. trachomatis cryptic plasmid DNA was detected in 7.4% of the samples. Frequency of IL6-174G>C polymorphism was higher in CAD and HVD than in CG regardless of previous exposure to Chlamydia. Previous C. trachomatis infection showed involvement in HVD and CAD. Significant association between disease and previous C. pneumoniae infection was found only among HVD. GG genotype of IL6-174G>C is apparently a risk factor for heart disease, whereas AT genotype of IL8-251A>T was mainly involved in valvulopathies, including patients with prior exposure to C. pneumoniae.

Pubmed ID: 30804931 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


GraphPad Prism (tool)

RRID:SCR_002798

Statistical analysis software that combines scientific graphing, comprehensive curve fitting (nonlinear regression), understandable statistics, and data organization. Designed for biological research applications in pharmacology, physiology, and other biological fields for data analysis, hypothesis testing, and modeling.

View all literature mentions

Primer3 (tool)

RRID:SCR_003139

Tool used to design PCR primers from DNA sequence - often in high-throughput genomics applications. It does everything from mispriming libraries to sequence quality data to the generation of internal oligos.

View all literature mentions

FastPCR (tool)

RRID:SCR_003155

Software tool for PCR primers or probe design, in silico PCR, oligonucleotide assembly and analyses, alignment and repeat searching.

View all literature mentions

Thermo Fisher Scientific (tool)

RRID:SCR_008452

Commercial vendor and service provider of laboratory reagents and antibodies. Supplier of scientific instrumentation, reagents and consumables, and software services.

View all literature mentions

QIAGEN (tool)

RRID:SCR_008539

A commercial organization which provides assay technologies to isolate DNA, RNA, and proteins from any biological sample. Assay technologies are then used to make specific target biomolecules, such as the DNA of a specific virus, visible for subsequent analysis.

View all literature mentions