2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Trehalose restores functional autophagy suppressed by high glucose.

Reproductive toxicology (Elmsford, N.Y.) | 2019

Autophagy is required for neurulation, and autophagy activators with minimal toxicity, such as the natural compound trehalose, a nonreducing disaccharide, possess high therapeutic value. To determine whether trehalose directly induces autophagy, FITC-labeled trehalose was used for tracing its presence in autophagosome complexes. Trehalose was as potent as rapamycin and starvation in inducing de novo autophagosome formation and increasing autophagosome flux in GFP-LC3 reporter cells and C17.2 neural stem cells. Trehalose effectively reversed high glucose-suppressed autophagy and reduced p62 protein expression. Trehalose abolished the disruption of autophagosome complexes under high glucose conditions in vitro and maternal diabetes in vivo. Autophagosomes induced by trehalose were functionally active, forming mitophagy and reticulophagy in removing damaged cellular organelles in neuroepithelial cells exposed to maternal diabetes. Thus, trehalose directly participated in functional autophagosome generation by incorporating itself into autophagosomes. These findings provide the mechanistic basis for the use of trehalose in preventing disruptive autophagy-associated pathogenesis.

Pubmed ID: 30769031 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK101972
  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL131737
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK103024
  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK083243
  • Agency: NICHD NIH HHS, United States
    Id: R01 HD100195
  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL134368

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Addgene (tool)

RRID:SCR_002037

Non-profit plasmid repository dedicated to helping scientists around the world share high-quality plasmids. Facilitates archiving and distributing DNA-based research reagents and associated data to scientists worldwide. Repository contains over 65,000 plasmids, including special collections on CRISPR, fluorescent proteins, and ready-to-use viral preparations. There is no cost for scientists to deposit plasmids, which saves time and money associated with shipping plasmids themselves. All plasmids are fully sequenced for validation and sequencing data is openly available. We handle the appropriate Material Transfer Agreements (MTA) with institutions, facilitating open exchange and offering intellectual property and liability protection for depositing scientists. Furthermore, we curate free educational resources for the scientific community including a blog, eBooks, video protocols, and detailed molecular biology resources.

View all literature mentions

SigmaStat (tool)

RRID:SCR_010285

Software tool for data graphing and analysis by Systat Software, Inc.

View all literature mentions